Optimal Severity of Stress Test Scenarios by Johannes J. Fischer and Natalie Kessler

Discussion by Cecilia Parlatore

NYU Stern, NBER and CEPR

October 20, 2023

Question What is the optimal stress test design?

Stress tests are used in liquidity/risk management and financial supervision

- Stress tests are used in liquidity/risk management and financial supervision
- Three components

- Stress tests are used in liquidity/risk management and financial supervision
- Three components

- ► Literature focuses on disclosure of results
- Less work on how to design forward-looking scenarios

- Stress tests are used in liquidity/risk management and financial supervision
- Three components

- Literature focuses on disclosure of results
- Less work on how to design forward-looking scenarios
- ► This paper: Optimal severity of stress scenario

Environment

t=1 Representative bank maximizes representative investor's utility

$$\max_{E_1 \in [0, E_0], L_1 \ge 0} (E_0 - E_1) + \mathbb{E}_{r_{2,l}} [E_2] - \mathbb{V}ar_{r_{2,l}} [E_2]$$

subject to

$$\begin{split} E_2 &= r_{2,l}L_1 + E_1 - r_d \left(L_1 - E_1\right) \\ \frac{E_1}{L_1} &\geq \chi & \text{(minimum equity constraint)} \\ \frac{\tilde{E}_2}{L_1} &\geq \chi & \text{(stress test constraint)} \end{split}$$

Environment

t=1 Representative bank maximizes representative investor's utility

$$\max_{E_1 \in [0, E_0], L_1 \ge 0} (E_0 - E_1) + \mathbb{E}_{r_{2,l}} [E_2] - \mathbb{V}ar_{r_{2,l}} [E_2]$$

subject to

$$\begin{split} E_2 &= r_{2,l}L_1 + E_1 - r_d \left(L_1 - E_1 \right) \\ \frac{E_1}{L_1} &\geq \chi & \text{(minimum equity constraint)} \\ \frac{E_1}{L_1} &\geq \frac{\chi + r_d - \tilde{r}_{l,2}}{1 + r_d} & \text{(stress test constraint)} \end{split}$$

Environment

t=1 Representative bank maximizes representative investor's utility

$$\max_{E_1 \in [0, E_0], L_1 \ge 0} (E_0 - E_1) + \mathbb{E}_{r_{2,l}} [E_2] - \mathbb{V}ar_{r_{2,l}} [E_2]$$

subject to

$$\begin{split} E_2 &= r_{2,l}L_1 + E_1 - r_d \; (L_1 - E_1) \\ \frac{E_1}{L_1} &\geq \chi & \text{(minimum equity constraint)} \\ \frac{E_1}{L_1} &\geq \frac{\chi + r_d - \tilde{r}_{l,2}}{1 + r_d} & \text{(stress test constraint)} \end{split}$$

t=0 Supervisor chooses stress scenario to maximize

$$\max_{\tilde{r}_{2,l}} \mathbb{E}_{r_{1,l}} \left[L_1 \right] - \mathbb{V}ar_{r_{1,l}} \left[L_1 \right]$$

where $r_{2,l} = \mu_l + \rho r_{1,l} + \sigma_l \varepsilon_1$

1. Very interesting paper! Many interesting policy relevant exercises

1. Very interesting paper! Many interesting policy relevant exercises

2. Timing minimum equity constraints $rac{E_t}{L_t} \geq \chi$

- 1. Very interesting paper! Many interesting policy relevant exercises
- 2. Timing minimum equity constraints $\frac{E_t}{L_t} \ge \chi$
- 3. Equity issuance $E_1 \in [0, E_0]$

- 1. Very interesting paper! Many interesting policy relevant exercises
- 2. Timing minimum equity constraints $rac{E_t}{L_t} \geq \chi$
- 3. Equity issuance $E_1 \in [0, E_0]$
- 4. Alternative implementation: minimum equity constraint?

- 1. Very interesting paper! Many interesting policy relevant exercises
- 2. Timing minimum equity constraints $\frac{E_t}{L_t} \ge \chi$
- 3. Equity issuance $E_1 \in [0, E_0]$
- 4. Alternative implementation: minimum equity constraint?
 - Minimum equity constraint + stress test constraint

$$\frac{E_1}{L_1} \ge \max\left\{\chi, \frac{\chi + r_d - \tilde{r}_{l,2}}{1 + r_d}\right\} = \overline{\chi}$$

- 1. Very interesting paper! Many interesting policy relevant exercises
- 2. Timing minimum equity constraints $\frac{E_t}{L_t} \ge \chi$
- 3. Equity issuance $E_1 \in [0, E_0]$
- 4. Alternative implementation: minimum equity constraint?
 - Minimum equity constraint + stress test constraint

$$\frac{E_1}{L_1} \ge \max\left\{\chi, \frac{\chi + r_d - \tilde{r}_{l,2}}{1 + r_d}\right\} = \overline{\chi}$$

5. However, severity of scenario: innovation to return $\tau \neq$ level of return $\tilde{r}_{l,2} = \mu_l + \rho r_{1,l} + \tau \varepsilon_1$

interpretation: contingent equity constraints?

- 1. Very interesting paper! Many interesting policy relevant exercises
- 2. Timing minimum equity constraints $\frac{E_t}{L_t} \ge \chi$
- **3**. Equity issuance $E_1 \in [0, E_0]$
- 4. Alternative implementation: minimum equity constraint?
 - Minimum equity constraint + stress test constraint

$$\frac{E_1}{L_1} \ge \max\left\{\chi, \frac{\chi + r_d - \tilde{r}_{l,2}}{1 + r_d}\right\} = \overline{\chi}$$

5. However, severity of scenario: innovation to return $\tau \neq$ level of return $\tilde{r}_{l,2} = \mu_l + \rho r_{1,l} + \tau \varepsilon_1$

interpretation: contingent equity constraints?

6. Stress test design vs. severity of scenario

What are stress tests used for?

What are stress tests used for?

Parlatore and Philippon 2023: model stress tests as a learning mechanism

Learn to manage risk and take a remedial action

What are stress tests used for?

Parlatore and Philippon 2023: model stress tests as a learning mechanism

Learn to manage risk and take a remedial action

Parlatore and Philippon 2023

- Stress tests as a learning mechanism
- Regulator uses stress tests to learn about banks' exposures to risk factors
- Interventions based on the stress test results

Parlatore and Philippon 2023

- Stress tests as a learning mechanism
- Regulator uses stress tests to learn about banks' exposures to risk factors
- Interventions based on the stress test results
- Optimal stress test design
 - ▶ accuracy of stress tests is lower in more extreme scenarios⇒ magnitude of stress
 - responsiveness of interventions to information \Rightarrow *direction* of stress

Parlatore and Philippon 2023

- Stress tests as a learning mechanism
- Regulator uses stress tests to learn about banks' exposures to risk factors
- Interventions based on the stress test results
- Optimal stress test design
 - ▶ accuracy of stress tests is lower in more extreme scenarios⇒ magnitude of stress
 - responsiveness of interventions to information \Rightarrow *direction* of stress
- Calibration results:
 - Gains from optimal stress test design are small if can only use broad capital requirements
 - Value of optimally designed stress tests is higher when targeted interventions are available