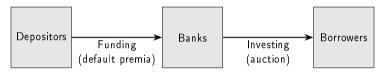
Open Banking: Lending Market Competition and Resource Allocation Efficiency by Goldstein, Huang, and Yang

Discussion by Cecilia Parlatore

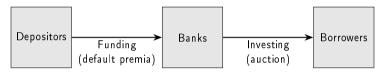
NYU Stern, NBER and CEPR

June 7, 2024


Question How does Open Banking affect credit market competitionand the efficiency of bank financing?

Question How does Open Banking affect credit market competitionand the efficiency of bank financing?

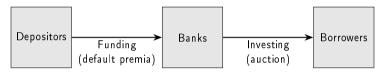
This paper Open banking can reduce allocative efficiency of credit!


Question How does Open Banking affect credit market competitionand the efficiency of bank financing?

This paper Open banking can reduce allocative efficiency of credit!

Question How does Open Banking affect credit market competitionand the efficiency of bank financing?

This paper Open banking can reduce allocative efficiency of credit!



Banking systems:

- 1. Closed banking: one informed bank, one uninformed bank
- 2. Open banking: two ex-ante symmetric banks (same information structure)

Question How does Open Banking affect credit market competitionand the efficiency of bank financing?

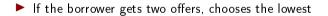
This paper Open banking can reduce allocative efficiency of credit!

Banking systems:

- 1. Closed banking: one informed bank, one uninformed bank
- 2. Open banking: two ex-ante symmetric banks (same information structure)

Funding costs from rollover decisions:

- 1. Incorporate default premia: Respond to portfolio choices and competition creditor's beliefs adjust!
- 2. Guaranteed return: Fixed


Model

Borrower needs one unit of funds to invest in a risky projects with payoff

$$P = \begin{cases} R & \theta = 1 \\ 0 & \theta = 0 \end{cases} \quad \text{where} \quad q = \Pr\left(\theta = 1\right)$$

Two banks compete for the borrower by simultaneously making a TIOLI offer based on their information

$$b^{j} \in [\underbrace{[0,R]}_{\mathsf{offer}} \cup \underbrace{\infty}_{\mathsf{no offer}} \quad j = 1,2$$

Model

Borrower needs one unit of funds to invest in a risky projects with payoff

$$P = egin{cases} R & heta = 1 \ 0 & heta = 0 \end{cases} \quad ext{where} \quad q = \Pr\left(heta = 1
ight)$$

Two banks compete for the borrower by simultaneously making a TIOLI offer based on their information

$$b^{j} \in [0, R] \cup \infty_{\text{no offer}} \quad j = 1, 2$$

- Bank can also invest in a risk-free asset with return R_a
- Short-term creditor supply funds to the banks, who can default
 - \blacktriangleright rollover after observing the bank's portfolios: require r_a if risk-free and r_b if risky
 - cost of loan is $\mathbb{E}(\theta|\text{information}) \times r_b$

Funding costs

- Required return for risk-free portfolio is fixed at r_a
- Return required to rollover debt when portfolio is risky:
 - With default premium: $r_b = \frac{r_a}{\xi(b)}$ where $\xi(b)$ is the expected success probability if the winning bid is b
 - Without default premium (guarantees for creditors): $r_b = r_a$.

Information Structure: Closed vs. Open Banking

Closed banking:

- Bank 1 has a signal s¹ = {L, H} about θ with Pr(s¹ = H|θ = 1)=Pr (s¹ = L|θ = 0) = π > 0.5
 Bank 2 is uninformed, i.e., s² = {L, H} with
 - Pr($s^2 = H|\theta = 1$)=Pr($s^2 = L|\theta = 0$)=0.5

Open banking

► Both banks are symmetrically informed, i.e. $\Pr(s^2 = H|\theta = 1) = \Pr(s^2 = L|\theta = 0) = \pi > 0.5$

Assumptions:

- No offer if $s^i = L$
- No offer if bank is uninformed and cannot transfer risk to creditors

	Closed Banking	Open Banking
Default Premia	- Bank 1 is a monopolist if H - Bank 2 never participates - Funding costs $r_b = \frac{r_a}{\pi}$ - Good loans: π - Bad loans: $1 - \pi$ - Expected NPV $W^c > W^o$ - $b = R \rightarrow$ borrower welfare= 0	
Guaranteed Returns	1	

Closed Banking

Default Premia	- Bank 1 is a monopolist if H - Bank 2 never participates - Funding costs $r_b = \frac{r_a}{\pi}$ - Good loans: π - Bad loans: $1 - \pi$ - Expected NPV $W^c > W^o$ - $b = R \rightarrow$ borrower welfare= 0	- Banks do not participate if L - Banks stay out w/prob $\gamma > 0$ if H - Funding costs $r_b > \frac{r_a}{\pi}$ - Good loans $< \pi$ iff $R < R_H$ - Bad loans $< 1 - \pi$ iff $R < R_L$ - Expected NPV $W^o < W^c$ - Positive borrower welfare
Guaranteed Returns	4	

Open Banking

Closed Banking

Open Banking

Default Premia	- Bank 1 is a monopolist if H - Bank 2 never participates - Funding costs $r_b = \frac{r_a}{\pi}$ - Good loans: π - Bad loans: $1 - \pi$ - Expected NPV $W^c > W^o$ - $b = R \rightarrow$ borrower welfare= 0	- Banks do not participate if L - Banks stay out w/prob $\gamma > 0$ if H - Funding costs $r_b > \frac{r_a}{\pi}$ - Good loans $< \pi$ iff $R < R_H$ - Bad loans $< 1 - \pi$ iff $R < R_L$ - Expected NPV $W^o < W^c$ - Positive borrower welfare
Guaranteec Returns	- Bank 1 always participates if H - Bank 2 stays out w/prob $\gamma < 1$ if H - Funding costs $r_b = r_a$ - Good loans $< \pi$ iff $R < R_H$ - Bad loans $< 1 - \pi$ iff $R < R_L$ - Expected NPV $W^c < W^o$ - Positive borrower welfare	

Closed Banking

Open Banking

Default Premia	- Bank 1 is a monopolist if H - Bank 2 never participates - Funding costs $r_b = \frac{r_a}{\pi}$ - Good loans: π - Bad loans: $1 - \pi$ - Expected NPV $W^c > W^o$ - $b = R \rightarrow$ borrower welfare= 0	- Banks do not participate if L - Banks stay out w/prob $\gamma > 0$ if H - Funding costs $r_b > \frac{r_a}{\pi}$ - Good loans $< \pi$ iff $R < R_H$ - Bad loans $< 1 - \pi$ iff $R < R_L$ - Expected NPV $W^o < W^c$ - Positive borrower welfare
Guaranteec Returns	- Bank 1 always participates if H - Bank 2 stays out w/prob $\gamma < 1$ if H - Funding costs $r_b = r_a$ - Good loans $< \pi$ iff $R < R_H$ - Bad loans $< 1 - \pi$ iff $R < R_L$ - Expected NPV $W^c < W^o$ - Positive borrower welfare	- Banks do not participate if L - Banks stay out w/prob $\gamma > 0$ if H - Funding costs $r_b > \frac{r_a}{\pi}$ - Good loans $< \pi$ iff $R < R_H$ - Bad loans $< 1 - \pi$ iff $R < R_L$ - Expected NPV $W^o > W^c$ - Positive borrower welfare

1. Very nice paper! Relevant and interesting mechanisms...

- 1. Very nice paper! Relevant and interesting mechanisms...
- Would like to understand the role of the assumptions better!
 2.1 Funding costs and lending costs

• Expected profits when offering b for bank i

 $\left[\Pr\left(\mathsf{comp}\right)\Pr\left(\mathsf{W}\right)\mathbb{E}\left[\theta|\mathsf{comp}\right]+\Pr\left(\mathsf{no\ comp}\right)\mathbb{E}\left[\theta|\mathsf{no\ comp}\right]\right]b^{i}+\Pr\left(\mathsf{comp}\right)\Pr\left(\mathsf{L}\right)R_{a}$

 $-\left[\Pr\left(\mathsf{comp}\right)\Pr\left(\mathsf{W}\right)\mathbb{E}\left[\theta|\mathsf{comp}\right]+\Pr\left(\mathsf{no}\;\mathsf{comp}\right)\mathbb{E}\left[\theta|\mathsf{no}\;\mathsf{comp}\right]\right]\mathbf{r}_{b}-\Pr\left(\mathsf{comp}\right)\Pr\left(\mathsf{L}\right)\mathbf{r}_{a}$

Expected profits when offering b for bank i $[\Pr(\text{comp}) \Pr(W) \mathbb{E} [\theta|\text{comp}] + \Pr(\text{no comp}) \mathbb{E} [\theta|\text{no comp}]] b^{i} + \Pr(\text{comp}) \Pr(L) R_{a}$ $- [\Pr(\text{comp}) \Pr(W) \mathbb{E} [\theta|\text{comp}] + \Pr(\text{no comp}) \mathbb{E} [\theta|\text{no comp}]] r_{b} - \Pr(\text{comp}) \Pr(L) r_{a}$

► Average lending cost $\lambda = \frac{[\Pr(\text{comp}) \Pr(W) \mathbb{E}[\theta|\text{comp}] + \Pr(\text{no comp}) \mathbb{E}[\theta|\text{no comp}]] r_b}{\Pr(\text{comp}) \Pr(W) + \Pr(\text{no comp})}$

• Expected profits when offering b for bank i

 $[\Pr(\text{comp}) \Pr(W) \mathbb{E}[\theta|\text{comp}] + \Pr(\text{no comp}) \mathbb{E}[\theta|\text{no comp}]] b^{i} + \Pr(\text{comp}) \Pr(L) R_{a}$ $- [\Pr(\text{comp}) \Pr(W) \mathbb{E}[\theta|\text{comp}] + \Pr(\text{no comp}) \mathbb{E}[\theta|\text{no comp}]] r_{b} - \Pr(\text{comp}) \Pr(L) r_{a}$

Average lending cost

 $\lambda = \mathbb{E}\left[\theta | \text{win with } b\right] r_b$

Expected profits when offering *b* for bank *i*

 $[\Pr(\text{comp}) \Pr(W) \mathbb{E}[\theta|\text{comp}] + \Pr(\text{no comp}) \mathbb{E}[\theta|\text{no comp}]] b^{i} + \Pr(\text{comp}) \Pr(L) R_{a}$ $- [\Pr(\text{comp}) \Pr(W) \mathbb{E}[\theta|\text{comp}] + \Pr(\text{no comp}) \mathbb{E}[\theta|\text{no comp}]] r_{b} - \Pr(\text{comp}) \Pr(L) r_{a}$

Average lending cost

$$\lambda = \mathbb{E}\left[\theta | \text{win with } b\right] \mathbf{r}_{b}$$

▶ With guaranteed return: lower cost of lending ⇒ transfer risk to creditors

Expected profits when offering *b* for bank *i*

 $[\Pr(\text{comp}) \Pr(W) \mathbb{E}[\theta|\text{comp}] + \Pr(\text{no comp}) \mathbb{E}[\theta|\text{no comp}]] b^{i} + \Pr(\text{comp}) \Pr(L) R_{a}$ $- [\Pr(\text{comp}) \Pr(W) \mathbb{E}[\theta|\text{comp}] + \Pr(\text{no comp}) \mathbb{E}[\theta|\text{no comp}]] r_{b} - \Pr(\text{comp}) \Pr(L) r_{a}$

Average lending cost

$$\lambda = \mathbb{E}\left[\theta | \text{win with } b\right] r_b$$

• With guaranteed return: lower cost of lending \Rightarrow transfer risk to creditors

With default premium: cannot transfer risk, back to fixed average lending cost

$$r_b = rac{r_a}{\mathbb{E}\left[heta | ext{win with } b
ight]}$$

1. Very nice paper! Relevant and interesting mechanisms...

- 1. Very nice paper! Relevant and interesting mechanisms...
- 2. Would like to understand the role of the assumptions better!
 - 2.1 Funding costs and lending costs
 - 2.2 Portfolio choice

- 1. Very nice paper! Relevant and interesting mechanisms...
- 2. Would like to understand the role of the assumptions better!
 - 2.1 Funding costs and lending costs
 - 2.2 Portfolio choice

b) Portfolio choice and Participation

• Expected profits when offering b for bank i

 $[\Pr(\text{comp}) \Pr(W) \mathbb{E}[\theta|\text{comp}] + \Pr(\text{no comp}) \mathbb{E}[\theta|\text{no comp}]] b^{i} + \Pr(\text{comp}) \Pr(L) R_{a} - [\Pr(\text{comp}) \Pr(W) \mathbb{E}[\theta|\text{comp}] + \Pr(\text{no comp}) \mathbb{E}[\theta|\text{no comp}]] r_{b} - \Pr(\text{comp}) \Pr(L) r_{a}$

b) Portfolio choice and Participation

Expected profits when offering b for bank i

 $[\Pr(\text{comp}) \Pr(W) \mathbb{E}[\theta|\text{comp}] + \Pr(\text{no comp}) \mathbb{E}[\theta|\text{no comp}]] b^{i} + \Pr(\text{comp}) \Pr(L) R_{a} - [\Pr(\text{comp}) \Pr(W) \mathbb{E}[\theta|\text{comp}] + \Pr(\text{no comp}) \mathbb{E}[\theta|\text{no comp}]] r_{b} - \Pr(\text{comp}) \Pr(L) r_{a}$

- ▶ In the literature, outside option in normalized to zero, i.e., $R_a = r_a = 0$.
- ► Paper focuses on $R \in \left(\frac{R_a}{\pi}, 2R_a\right) \Rightarrow$ inefficiency of uninformed lending and no participation under CB
- Ignoring outside options can have important implications for results on competition if R_a is large relative to R!

- 1. Very nice paper! Relevant and interesting mechanisms...
- 2. Would like to understand the role of the assumptions better!
 - 2.1 Funding costs and lending costs
 - 2.2 Portfolio choice
- 3. Participation is an important aspect when thinking about open banking... but monopoly under CB makes some results less interesting

- 1. Very nice paper! Relevant and interesting mechanisms...
- 2. Would like to understand the role of the assumptions better!
 - 2.1 Funding costs and lending costs
 - 2.2 Portfolio choice
- 3. Participation is an important aspect when thinking about open banking... but monopoly under CB makes some results less interesting
 - 3.1 Entry is important! Is the extensive margin dominating everything?
 - **3.2** Can inefficiency increase with open banking when there is competition under closed banking?

- 1. Very nice paper! Relevant and interesting mechanisms...
- 2. Would like to understand the role of the assumptions better!
 - 2.1 Funding costs and lending costs
 - 2.2 Portfolio choice
- 3. Participation is an important aspect when thinking about open banking... but monopoly under CB makes some results less interesting
 - 3.1 Entry is important! Is the extensive margin dominating everything?
 - **3.2** Can inefficiency increase with open banking when there is competition under closed banking?
- 4. I was left wanting more ...
 - 4.1 When are the costs of open banking higher? Defaults?
 - 4.2 High or low interest rates r_a or R_a ? High or low quality ex-ante $Pr(\theta = 1)$?

- 1. Very nice paper! Relevant and interesting mechanisms...
- 2. Would like to understand the role of the assumptions better!
 - 2.1 Funding costs and lending costs
 - 2.2 Portfolio choice
- 3. Participation is an important aspect when thinking about open banking... but monopoly under CB makes some results less interesting
 - 3.1 Entry is important! Is the extensive margin dominating everything?
 - **3.2** Can inefficiency increase with open banking when there is competition under closed banking?
- 4. I was left wanting more ...
 - 4.1 When are the costs of open banking higher? Defaults?
 - 4.2 High or low interest rates r_a or R_a ? High or low quality ex-ante $Pr(\theta = 1)$?
- 5. General comment: What does open banking do?
 - 5.1 In the paper: eliminates all informational advantages of the incumbent (same precision)

- 1. Very nice paper! Relevant and interesting mechanisms...
- 2. Would like to understand the role of the assumptions better!
 - 2.1 Funding costs and lending costs
 - 2.2 Portfolio choice
- 3. Participation is an important aspect when thinking about open banking... but monopoly under CB makes some results less interesting
 - 3.1 Entry is important! Is the extensive margin dominating everything?
 - **3.2** Can inefficiency increase with open banking when there is competition under closed banking?
- 4. I was left wanting more ...
 - 4.1 When are the costs of open banking higher? Defaults?
 - 4.2 High or low interest rates r_a or R_a ? High or low quality ex-ante $Pr(\theta = 1)$?
- 5. General comment: What does open banking do?
 - 5.1 In the paper: eliminates all informational advantages of the incumbent (same precision)
 - 5.2 Alternatives: advantages for entrant or changes in information span rather than precision