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Abstract
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1 Introduction

Financial markets play an important role by aggregating information about the fundamentals
of the economy. By pooling different sources of information, asset prices act as a public signal
to any external observer in the economy, potentially influencing individual decisions. This view
that treats asset prices as a signal about future fundamentals is typically traced back to Hayek
(1945).

Despite the substantial theoretical literature that studies how prices aggregate information,
the connection between the theoretical and empirical research on price informativeness remains
understudied. In particular, most existing empirical work on the informational content of prices
typically focuses on predictability/forecasting measures, which fail to isolate the role of prices as
signals about fundamentals. Moreover, the existing literature lacks formal identification results.
This paper seeks to fill both gaps.

In this paper, we show how to identify and estimate relative price informativeness, a notion
of informativeness that formally corresponds to the relative precision of the signal about future
payoffs contained in asset prices. To derive our results, we only need to postulate i) an asset
pricing equation and ii) a stochastic process for asset payoffs. Our main results show that a
specific combination of R-squareds from linear regressions of changes in asset prices on changes
in asset payoffs exactly identifies relative price informativeness within a class of models that
may feature heterogeneity across investors’ preferences, endowments, private signals, and private
trading needs; competitive or strategic market structures; symmetric or asymmetric information;
and that require minimal distributional assumptions. Our approach has the potential to provide
model-based tests of predictions in widely used dispersed information models.

The main contribution of this paper is an identification result and an estimation procedure
that determine how much information about future payoffs is contained in asset prices. Our
approach allows us to answer questions that cannot be answered with the existing measures of
informational efficiency. For example, suppose one is interested in whether asset prices are a
good guide for allocating real capital to firms. In this case, measures related to the predictability
of future earnings may give the wrong answer if prices are very noisy but future earnings are
very responsive to earnings news. Our identification and estimation results correctly account
for the noise in prices, giving an appropriate answer to the question.

Alternatively, one can be interested in the effect that changes in the market structure or
financial regulation have on the ability of markets to aggregate information, usually central
issues in policy debates. This matter cannot be settled by looking at forecasting measures
and requires measuring the informational content of prices directly, as we do in this paper.
Perhaps more importantly, the ability to measure price informativeness in a model-consistent
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way opens the door to testing and disciplining a variety of theories of information aggregation.
We hope that showing how to identify and estimate price informativeness leads the way to
making empirically-based statements about social welfare in the future.

We begin by formally defining two price informativeness measures with desirable properties:
absolute and relative price informativeness. Absolute price informativeness, which formally
corresponds to the precision of the unbiased signal about the innovation to the asset payoff
contained in the asset price, measures the precision of the public signal revealed by the asset
price. Relative price informativeness, which corrects absolute price informativeness to account
for the variability of the asset payoff, measures how much can be learned from the price relative
to the total amount that can be learned. Relative price informativeness takes values between 0
and 1, making it easy to interpret and to compare across stocks. Moreover, in a Gaussian
environment, relative price informativeness exactly corresponds to the Kalman gain in the
updating process of a Bayesian external observer who only learns from the price. For instance,
finding that relative price informativeness is 0.2 implies i) that the uncertainty faced by an
external observer about the asset payoff is reduced by 20% after observing the price, and ii)
that an external observer puts a weight of 20% on the price signal (and a weight of 80% on the
prior) when forming a posterior belief over the future payoff.

We succinctly describe our approach to identifying and estimating (relative) price informa-
tiveness about the one-period ahead payoff growth in a simplified environment without public
signals. Consider the following two regressions that relate log-price changes, ∆pt, to the con-
temporary and future differences in log-asset payoffs, denoted by ∆xt and ∆xt+1, respectively:

∆pt = β + β0∆xt + β1∆xt+1 + et (R1)

∆pt = ζ + ζ0∆xt + eζt , (R2)

where we denote the R-squareds of Regressions R1 and R2 by R2
∆x,∆x′ and R2

∆x, respectively.
Our main result shows that the normalized difference in R-squareds

R2
∆x,∆x′ −R2

∆x
1−R2

∆x

exactly corresponds to relative price informativeness. In addition to this identification result, we
show that estimating these two regressions using ordinary least squares (OLS) yields a consistent
estimate of relative price informativeness. An important implication of our results is that it is
possible to recover price informativeness by relying exclusively on price and payoff information,
without having to observe the sources of noise in asset prices — subsumed in the error terms et
and eζt . Our identification results are therefore agnostic about the nature of the noise in asset
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prices.
While it may seem straightforward to identify and estimate price informativeness in the

stylized environment implied by equations R1 and R2, it is harder to do so in more complex
scenarios. In fact, in our baseline environment, we consider a framework with an arbitrary
set of public signals and a nonzero correlation between payoff- and non-payoff related trading
motives (Proposition 1). In extensions to our baseline result, we also allow for the possibility
that payoffs have an unlearnable component (Proposition 2) and provide results to recover price
informativeness about payoff growths at longer horizons (Proposition 3).1

Even though we show that price informativeness can be recovered without fully specifying
the model primitives, a microfounded model is necessary to understand the link between
price informativeness and the primitives in the economy. For this reason, we develop several
microfounded dynamic models of trading that are consistent with the asset pricing equation
and the stochastic process for asset payoffs that we use to derive our identification results.
First, we study a model in which investors have private signals about future payoffs and
orthogonal trading motives in the form of random priors (sentiment). Subsequently, we study
a representative agent model similar to those used in the macro-finance literature. Finally, we
study a model with informed and uninformed investors, as in the classic literature on information
and learning. Analyzing these applications has a dual purpose. First, these applications show
that our identification results apply to economies i) with or without dispersed information among
investors, ii) with time-varying risk aversion/risk-premia, iii) with investors who may or may
not learn from prices, and iv) in which noise may arise from different sources. Second, these
applications allow us to provide a structural economic interpretation of the empirical results
presented in Section 4.

Next, we use our identification results to estimate relative price informativeness. First, we
recover a quarterly panel of stock-specific measures of price informativeness between 1985 and
2017 by running rolling time-series regressions of the form implied by our baseline environment at
the stock level using year-on-year changes with overlapping data. We find that the distribution
of informativeness across stocks is right-skewed, with time-series averages of the median and
mean levels of price informativeness across all stocks and years given by 4.47% and 8.54%,
respectively. Our estimation exercise allows us to uncover both cross-sectional and time-series
patterns in price informativeness. In the cross-section, we find that stocks that i) are larger, ii)
turn over more quickly, iii) have a higher institutional ownership share, and iv) have a higher
coverage by analysts have higher price informativeness. We also find that when we control
for the size of the stocks, the cross-sectional results on institutional ownership and analyst

1In previous versions of this paper, we also considered environments with multiple risky assets and strategic
investors.

3



coverage attenuate substantially. In the time series, we find that the median and mean price
informativeness have steadily increased since the mid-1980s. The standard deviation of price
informativeness has also increased over this period.

We then present estimation results in the context of our model with payoffs that have an
unlearnable component. In this case, the distribution of informativeness across stocks is also
right-skewed. Time-series averages of the median and mean levels of price informativeness
across all stocks and years are given by 4.67% and 9.29%, respectively. Consistent with our
baseline results, we find increasing time trends in the mean and median estimates of price
informativeness, as in the cross-sectional standard deviation. Finally, we extend our empirical
analysis to consider price informativeness about payoff growth rates at longer horizons and find
that price informativeness about future payoff growth decreases with the horizon of interest.

Our results by no means settle the question of how to identify and estimate price
informativeness, as we discuss in Section 5 before concluding. In particular, there is scope to
derive new identification results in more general environments, such as those with feedback effects
or significant non-linearities, and to overcome some limitations of our measurement exercise by
studying environments with better data availability.

Related Literature

Our theoretical framework takes as starting point the literature that studies the role played by
financial markets in aggregating dispersed information, following Grossman and Stiglitz (1980),
Hellwig (1980), Diamond and Verrecchia (1981), and De Long et al. (1990), among others.2

Building on this literature, our results show how to identify and consistently estimate relative
price informativeness, which is a notion of informativeness that formally corresponds to the
relative precision of the signal about future payoffs contained in asset prices.

Despite the substantial theoretical literature that has studied learning in financial markets,
there has been less interest in measuring the precision of prices as signals over future payoffs.
There is a literature that has proposed empirical measures to capture the informational content
of prices. These empirical measures have been inspired by economic models to different degrees.
Influenced by the predictions of the CAPM/APT frameworks and following the prominent
Roll (1988) presidential address, Morck, Yeung and Yu (2000) studies regressions of asset
returns on factors and informally argue that the R2 of such regressions can be used to capture
whether asset prices are informative/predictive about firm-specific fundamentals. This measure,
sometimes referred to as price nonsynchronicity, has been used in several empirical studies
that link price informativeness to capital allocation. In particular, Wurgler (2000) finds that
countries with higher price nonsynchronicity display a better allocation of capital. Durnev,

2See Vives (2008) and Veldkamp (2011) for systematic reviews of this body of work.
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Morck and Yeung (2004) documents a positive correlation between price nonsynchronicity and
corporate investment. Chen, Goldstein and Jiang (2006) establishes that there exists a positive
relationship between the sensitivity of corporate investment to stock prices and two measures
of the information contained in prices, price nonsynchronicity and the probability of informed
trading (PIN), concluding that managers learn from the price when making corporate investment
decisions. The PIN, developed in Easley, O’Hara and Paperman (1998), estimates the probability
of an informed trade using high-frequency data through the lens of a model with informed and
uninformed traders. Hou and Moskowitz (2005) and Weller (2018) also propose alternative
empirical measures. In particular, Weller (2018) uses a price jump ratio to measure how much
information enters prices relative to how much is potentially acquirable at the stock level, finding
that algorithmic trading decreases the amount of information incorporated into prices. When
compared to this body of work, a central contribution of our paper lies in providing identification
results within a general environment that encompasses the class of the models most frequently
used in the theoretical literature on learning. By doing this, our results have the potential to
directly discipline theories of information and learning in financial markets.

The interpretation of the results of the empirical literature mentioned above has not gone
unchallenged. For instance, Hou, Peng and Xiong (2013) highlights that a measure like Roll’s R2

(price nonsynchronicity) lacks a structural interpretation, questioning the link between return
price nonsynchronicity and notions of price informativeness from theoretical and empirical
perspectives. Our results in this paper address the Hou, Peng and Xiong (2013) critique by
first defining and justifying a theoretical notion of price informativeness, and then showing how
to identify it and consistently estimate it.

Our work is also related to that of Bai, Philippon and Savov (2016), who consider the
question of whether financial markets have become more informative over time. Even though
their empirical approach is motivated by a theoretical model, they do not provide identification
results or show how to formally identify and estimate price informativeness in the context
of a structural model, which is a central contribution of our paper. Our results and the
recent contemporaneous work of Farboodi et al. (2020) and Kacperczyk, Sundaresan and Wang
(2020) complement each other. While our focus is to provide identification results for price
informativeness (i.e., the signal-to-noise ratio in prices) in a general framework, Farboodi et al.
(2020) seeks to understand how changes in data processing over time have altered the amount
of information (signal) incorporated in asset prices. Using our measure of price informativeness
as an input in their analysis, they conclude that the divergence in price informativeness across
stocks is due to an increase in the amount of information incorporated in prices of large, high
growth stocks driven by an increase in data processing capacity. Kacperczyk, Sundaresan and
Wang (2020) finds a positive relationship between price informativeness and the ownership
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share of foreign institutional investors, using both empirical measures of informativeness and
the identification results developed in this paper. We discuss how our results relate to existing
work in more detail in Section 2.7.

2 General Framework

In this section, we first define and justify the notion of relative price informativeness, and then
show how to formally identify it and estimate it by specifying an asset pricing equation and
a stochastic process for asset payoffs. To align our results to the empirical implementation in
Section 4, we derive the main results in the body of the paper in a log-difference-stationary
environment, which allows us to sidestep concerns associated with nonstationarity.3

2.1 Baseline Environment

We consider a discrete time environment with dates t = 0, 1, 2, . . . ,∞, in which investors trade
a risky asset in fixed supply at a (log) price pt at each date t. We assume that the (log) payoff
of the risky asset at date t+ 1, xt+1, follows a difference-stationary AR(1) process

∆xt+1 = µ∆x + ρ∆xt + ut, (1)

where ∆xt ≡ xt−xt−1, µ∆x is a scalar, |ρ| < 1, and where the innovations to the payoff difference,
ut, have mean zero, a finite variance denoted by Var [ut] = σ2

u = τ−1
u , and are identically and

independently distributed over time. Note that the innovation to the t+ 1 payoff difference, ut,
is indexed by t — instead of t+ 1 — to indicate that investors can potentially learn about the
realization of ut at date t.

We assume that the equilibrium (log) price difference is given by

∆pt = φ+ φ0∆xt + φ1∆xt+1 + φχ ·∆χt + φn∆nt, (2)

where the coefficients φ, φ0, φ1, and φn are scalar parameters and φχ is a vector of N parameters.
We denote the vector of changes in the N public signals observed by investors by ∆χt, where

∆χt = ωut + ε∆χ
t ,

where ω is a N ×1 vector and ε∆χ
t is a N ×1 random vector that has mean zero, finite variance,

and is i.i.d. across time and independent of the innovations ut. We denote investors’ trading
3In the Internet Appendix, we re-derive the main results of the paper in a level-stationary environment, which

is the benchmark environment in the literature on information and learning in financial markets (Vives, 2008;
Veldkamp, 2011), and also in log-level-stationary and difference-stationary environments.
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motives that are not coming from their information by ∆nt, and allow them to be correlated
with the innovation to the payoff as follows:

∆nt = µ∆n + ωut + ε∆n
t ,

where ε∆n
t has mean zero and finite variance τ−1

∆n and is i.i.d. across time and independent of the
innovations ut. As shown in Section 3, the random variable nt can be interpreted as a measure
of investors’ sentiment, risk-bearing capacity, or noise trading activity. Our timing assumes that
date t variables, in particular ∆xt and ut, are realized before the price pt is determined.

In Section 3, we show that Equation (2) emerges endogenously as the solution to several
fully specified dynamic models of trading. In that case, the model parameters can be mapped
to specific combinations of primitives. We conclude the description of the environment with the
following remark.

Remark 1. Features of the environment. Note that our baseline model allows for an arbitrary set
of public signals and for a nonzero correlation between payoff- and non-payoff related trading
motives. In Sections 2.4 and 2.5, we further allow for the possibility that payoffs have an
unlearnable component and that the price may contain information about longer horizons.

2.2 Price Informativeness: Definition and Justification

Within the environment introduced in Section 2, we now formally define and justify two related
measures of informativeness: absolute and relative price informativeness. We focus on these
notions because of their desirable properties, as we explain below. Both are commonplace in the
theoretical literature on information and learning. Absolute price informativeness is discussed
in Section 4 of Vives (2008), while relative price informativeness corresponds to the exact notion
of informativeness used in Grossman and Stiglitz (1980).4 The contribution of this paper is to
provide formal identification results of both notions, and to use such results for estimation. In
Remark 6 below, we discuss the relation of these measures of price informativeness to others.

Formally, in our context, the unbiased signal of the innovation to future payoffs ut contained
in the price is the key variable of interest from the perspective of understanding how informative
asset prices are about future payoffs.5 This endogenous unbiased signal, which we denote by πt,

4Relative price informativeness, as defined in Equation (4) below, exactly corresponds to Equation (17) in
Grossman and Stiglitz (1980).

5In principle, one could study whether prices are informative about other variables of interest. Studying
informativeness about future payoffs seems like a natural starting point, although in an earlier version of this
paper we explained how to adapt our approach to identify informativeness about future prices.
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is given by

πt ≡
1

φ1 + φnω

(
∆pt −

(
φ+ φ1µ∆x + φnµ∆n + (φ0 + φ1ρ) ∆xt + φχ ·∆χt

))
,

Given Equation (2),
πt = ut + φn

φ1 + φnω
(∆nt − µ∆n) . (3)

defines an endogenous unbiased signal about ut, where φn
φ1+φnω (∆nt − µ∆n) acts as the noise

contained in the price signal. This signal πt is unbiased because E [πt|ut,∆xt,∆χt] = ut. Both
absolute and relative price informativeness, which we define and justify next, are the relevant
measures for an external observer who uses the asset price as a signal to learn about future asset
payoffs.

Definition. (Price informativeness)
a) Absolute price informativeness, denoted by τπ ∈ [0,∞), is the precision of the unbiased signal
about the innovation to the asset payoff contained in the asset price, given the vector of public
signals ∆χt. Given Equation (2), it is formally given by

τπ ≡ (Var [πt|∆xt+1,∆xt,∆χt])−1 =
(
φ1 + φnω

φn

)2
τ∆n, (4)

where τ∆n = Var [∆nt]−1.
b) Relative price informativeness, denoted by τRπ ∈ [0, 1], is the ratio between absolute price
informativeness and the sum of absolute price informativeness and the precision of the innovation
to the asset payoff, given the vector of public signals ∆χt. Given Equation (2), it is formally
given by

τRπ ≡
τπ

τπ + τu|∆χt
, (5)

where τu|∆χ = Var [ut|∆xt,∆χt]−1.

The definition of absolute price informativeness connects with the large body of work
that follows Blackwell (1953). According to Blackwell’s informativeness criterion to rank
experiments/signals, a signal is more informative than another when it is more valuable to a given
decision-maker. According to that criterion, in the environment considered here, absolute price
informativeness induces a complete order of price signals for a decision-maker with a quadratic
objective around the value of the future asset payoff.

Intuitively, absolute price informativeness measures the signal-to-noise ratio contained in
the asset price. If the price is very responsive to ∆xt+1, perhaps because investors trade with
very precise information about the future payoff, so φ1 is high, or their trading motives not
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coming from their information are highly correlated to the future payoff, so φnω is high, price
informativeness will be higher. Alternatively, if the price is mostly driven by trading motives
that are orthogonal to future payoffs, perhaps reflecting investors’ sentiment, φ2

nτ
−1
∆n will be

higher and price informativeness will be lower. When price informativeness is high, an external
observer receives a very precise signal about future payoffs by observing the change in the asset
price ∆pt. On the contrary, when price informativeness is low, an external observer learns little
about future payoffs by observing the change in the asset price ∆pt.

The definition of relative price informativeness corrects absolute price informativeness to
account for the variability of the payoff, via τu. This measure captures the precision of the
price signal, given by τπ, relative to the sum of the prior and the signal precisions of an external
observer who only learns from the price, given by τπ+τu. When uncertainty is Gaussian, relative
price informativeness as defined in Equation (5) corresponds exactly to the Kalman gain of a
Bayesian external observer who only learns from the price, as shown in Equation (7) below. If
an external observer had additional information about the future payoff in addition to the price,
the Kalman gain that we identify would be an upper bound to the one used by such external
observer.

Relative price informativeness is an appealing object because it provides a bounded (between
0 and 1), unit-free measure of informativeness that facilitates precise quantitative comparisons.
The unit-free nature of this measure is particularly relevant when comparing informativeness
across assets with different underlying payoff distributions (i.e., different τu), for which
comparisons of absolute price informativeness do not have a clear interpretation. In Remark
6 below, we further explain how absolute and relative price informativeness relate to other
notions of informativeness like posterior variances or forecasting price efficiency. In the body
of the paper, we focus on the identification of relative price informativeness because it is easily
interpretable and comparable across stocks. We include identification results for absolute price
informativeness in the Appendix. Going forward, to simplify the exposition, we typically refer
to relative price informativeness simply as price informativeness.

2.3 Price Informativeness: Identification

Proposition 1 introduces the main result of the paper. It shows how to combine the R-squareds
of regressions of changes in asset prices on realized and future changes in asset payoffs to recover
price informativeness.

Proposition 1. (Identifying price informativeness) Let β, β0, β1, and β2 denote the
coefficients of the following regression of log-price differences on realized and future log-payoff
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differences:

∆pt = β + β0∆xt + β1∆xt+1 + β2 ·∆χt + et, (R1)

where ∆pt = pt − pt−1 denotes the date t change in log-price, ∆xt = xt − xt−1 and ∆xt+1 =
xt+1−xt respectively denote the date t and t+1 log-payoff differences, ∆χt denotes the change in
public information, and where R2

∆x,∆x′ denotes the R-squared of Regression R1. Let ζ, ζ0, and
ζ2 denote the coefficients of the following regression of log-price differences on realized log-payoff
differences:

∆pt = ζ + ζ0∆xt + ζ2 ·∆χt + eζt , (R2)

where R2
∆x denotes the R-squared of Regression R2. Then, relative price informativeness, τRπ ,

defined in Equation (5), can be recovered as

τRπ =
R2

∆x,∆x′ −R2
∆x

1−R2
∆x

. (6)

Estimating Regressions R1 and R2 via OLS yields consistent estimates of R2
∆x,∆x′ and R2

∆x.

The proof of Proposition 1 relies on identifying the right combination of parameters in the
econometric specification defined by Regressions R1 and R2 that maps into the definition of
relative price informativeness, τRπ . We show in the Appendix that a similar logic can be used to
recover absolute price informativeness. It should be evident that if one could observe the non-
payoff-related determinants of prices (nt or ∆nt), that information could be used to directly
recover all the relevant primitives in Equations (1) and (2). The non-trivial economic content of
Proposition 1 is that if one is interested in recovering price informativeness, it is possible to do
so by relying exclusively on price and payoff information, without having to observe nt or ∆nt.

0 R2
∆x R2

∆x,∆x′ 1

R2
∆x,∆x′ −R2

∆x

1−R2
∆x

Figure 1: Interpreting relative price informativeness
Note: Relative price informativeness can be computed as the reduction in uncertainty, given by R2

∆x,∆x′ −R2
∆x,

relative to the remaining residual uncertainty about future payoffs after conditioning on the realized date t payoff,
given by 1−R2

∆x.

Figure 1 illustrates how to interpret Equation (6). The denominator 1 − R2
∆x can be

interpreted as the residual uncertainty about future payoffs after conditioning on the realized
date t asset payoff. The numerator R2

∆x,∆x′−R2
∆x can be interpreted as the percentage reduction
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in uncertainty about future payoffs after observing the asset price at date t in addition to the
realized payoff ∆xt. Because R2

∆x,∆x′ ≥ R2
∆x and R2

∆x,∆x′ ∈ [0, 1], it must be that τRπ ∈ [0, 1].
As we show in the Appendix, if all random variables in the model are Gaussian, a Bayesian

external observer who only learns from the price has the following posterior distribution over ut:

ut|∆pt,∆xt,∆χt ∼ N
(
τRπ πt, (τπ + τu)−1

)
, (7)

where πt, τπ, and τRπ are respectively defined in Equations (3), (4), and (5). Quantitatively,
a relative price informativeness of, for instance, 0.15, implies that the initial uncertainty of an
external observer who only learns from the price about the innovation to the future payoff is
reduced by 15% after learning from the price — this interpretation follows from the fact that
(τπ + τu)−1 =

(
1− τRπ

)
τ−1
u .

Even though we emphasize the economic identification of price informativeness, we also
address how to recover consistent estimates. When the external observer has access to public
information, the coefficient estimates in Regression R2 will be biased. The proof of Proposition
1 takes into account this bias and provides consistent estimates of relative price informativeness
as defined in Equation 5.

2.4 Unlearnable Payoff Component

So far, we have considered that all components of the payoff are learnable, that is, that there is
no systematic component of the payoff that deviates from the signals received by the investors.
However, it is plausible to think that investors can only learn about a part of the innovation
and that the remainder is unlearnable. Formally, we assume that the innovation to the payoff
is given by

∆xt+1 = µ∆x + ut, (8)

where ∆xt+1 = xt+1 − xt, µ∆x is a scalar, and x0 = 0. Moreover, the innovation to the payoff
is given by

ut = uLt + uUt ,

where uLt and uUt are the learnable and unlearnable components of the innovation. These
innovations have mean zero and variances given by

Var
[
uLt

]
=
(
τLu

)−1
and Var

[
uUt

]
∼
(
τUu

)−1
,
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with uLt ⊥ uUt . The main difference between these two components is that investors only receive
private signals about the learnable component, uLt . Formally, each investor receives a signal

sit = uLt + εist with εist ∼ N
(
0, τ−1

s

)
,

where εist ⊥ ε
j
st for all i 6= j, uLt ⊥ εist, and uUt ⊥ εist for all t and all i. Moreover, as in Section 2,

∆nt ≡ nt−nt−1 represents the change in the aggregate component of investors’ trading motives
that are not based on information about payoffs, given by ∆nt = µ∆n + ωuLt + ε∆n

t , where
Var

[
ε∆n
t

]
= σ2

∆n = τ−1
∆n.

In this case, the price process is given by

∆pt = φ+ φ0∆xt + φ1∆uLt + φχ∆χt + φn∆nt

and the unbiased signal contained in the price about the learnable component of next period’s
payoff is given by

πLt = uLt + φn
φ1 + φnω

ε∆n
t .

Then, absolute and relative price informativeness about uLt are respectively given by

τπL ≡
(
Var

[
φn
φ1
ε∆n
t

∣∣∣∣uLt , uLt−1,∆χt,∆xt
])−1

and τRπL ≡
τπL

τuLt |∆χ
+ τπL

. (9)

These definitions are analogous to the ones in Equations (4) and (5) in the baseline case with
the only difference that the future payoff is replaced by the learnable component of the future
payoff, uLt , and the learnable component of the current payoff, uLt−1, is part of the information
set. This definition of πLt assumes that uLt−1 is observed at date t. This is consistent with our
empirical implementation in which we map uLt with the average forecast of earnings growth at
date t + 1 between t and t + 1. From this observation it follows that Proposition 1 can be
extended to the case in which there is an unlearnable component of the payoff as follows.

Proposition 2. (Identifying price informativeness with unlearnable component) Let
β
u, βu0 , βu1 , βu2 , and βu3 denote the coefficients of the following regression of log-price differences

on realized log-payoff differences and log-forecast earnings differences:

∆pt = β
u + βu0 ∆xt + βu1u

L
t−1 + βu2u

L
t + βu3 ·∆χt + eut , (R1U)

where ∆pt = pt − pt−1 denotes the date t change in log-price, ∆xt = xt − xt−1 denotes the
date t log-payoff difference, uLt denotes the date t log-forecast earnings growth, and where R2

u,u′

denotes the R-squared of Regression R1U. Let ζu, ζu0 , ζu1 , and ζu3 denote the coefficients of
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the following regression of log-price differences on realized log-payoff differences and lagged log-
forecast earnings:

∆pt = ζ
u + ζu0 ∆xt + ζu1 u

L
t−1 + ζu3 ·∆χt + eζut , (R2U)

where R2
u denotes the R-squared of Regression R2U. Then, relative price informativeness, τR

πL
,

defined in Equation (9), can be recovered as

τRπL =
R2
u,u′ −R2

u

1−R2
u

. (10)

Estimating Regressions R1U and R2U via OLS yields consistent estimates of R2
u,u′ and R2

u.

2.5 Longer Horizons

Alternatively, one may be interested in understanding the behavior of price informativeness over
different horizons. In particular, when investors may have information over changes in future
log asset payoffs, the process for the (log) price difference can be modeled as

∆pt = φ+ φ0∆xt +
M∑
m=1

φm∆xmt + φχ ·∆χt + φn∆nt, (11)

for M ≥ 1, where

∆xmt ≡ xt+m − xt =
m−1∑
l=1

∆xlt + ut+m−1

is the cumulative growth between t and t + m and the process for ∆xt+l is given by Equation
1. In this case, the price contains information about payoff changes at different horizons. More
specifically, the unbiased signal about the change in the fundamental m periods ahead, ∆xmt ,
contained in the price pt is given by

πmt = 1
φm +

∑M
l=1,l 6=m φlK

l
m

∆pt − φ+ φ0∆xt − φnµ∆n −
M∑

l=1,l 6=m
φl
(
∆xlt −K l

m∆xmt
)

where K l
m = Cov

[
∆xmt ,∆xlt

]
Var [∆xmt ]−1 = Var

[
∆xmin{m,l}

t

]
Var [∆xmt ]−1. Then, absolute

price informativeness about the growth in the payoff m periods ahead is given by

τmπ ≡ (Var [πmt |∆xmt ,∆xt,∆χt])
−1
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and relative price informativeness about ∆xmt is given by

τmRπ ≡ τmπ
τmπ + τ∆xmt |∆χ

,

where τ∆xmt |∆χ ≡ Var [∆xmt |∆xt,∆χt].

Proposition 3. (Identifying price informativeness at longer horizons) Let βm, βm0 , βm1 ,
and βm2 denote the coefficients of the following regression of log-price differences on realized and
future log-payoff differences and public signals:

∆pt = β
m + βm0 ∆xt + βm1 ∆xmt + βm2 ·∆χt + emt , (R1m)

where ∆pt = pt − pt−1 denotes the date t change in log-price, ∆xt = xt − xt−1 and
∆xmt = xt+m− xt respectively denote the date t and the cumulative t+m log-payoff differences,
∆χt denotes the change in public information, and where R2

∆x,∆xm denotes the R-squared of
Regression 3. Let ζ, ζ0, and ζ2 denote the coefficients of the following regression of log-price
differences on realized log-payoff differences and change in public information:

∆pt = ζ + ζ0∆xt + ζ2 ·∆χt + eζt , (R2)

where R2
∆x denotes the R-squared of Regression R2. Then, relative price informativeness, τmRπ ,

defined in Equation (5), can be recovered as

τmRπ =
R2

∆x,∆xm −R2
∆x

1−R2
∆x

. (12)

An important observation from Proposition 3 is that whether investors have information
about payoff growth rates further out in the future does not invalidate of our approach to learn
about the one-period ahead payoff growth. This is easily shown by noting that Proposition 1
can be obtained from Proposition 3 by setting m = 1.

2.6 Price Informativeness: Remarks

We qualify and interpret our results in the following four remarks.

Remark 2. Observability of public signals. If the external observer from whose perspective one
is computing price informativeness only learns from the price and does not observe the public
signals, absolute and relative price informativeness are respectively given by given by

τπ ≡ (Var [πt|∆xt+1,∆xt])−1 =
(
φ1 + φnω + φχ · ω

φn

)2
τ∆n and τRπ = τπ

τπ + τu
.
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In this case, price informativeness can be recovered by dropping the public signals ∆χt from
Regressions R1 and R2 and following the procedure in Proposition 1.

Remark 3. Usefulness of price informativeness measures. From a practical standpoint, our
results are useful to test predictions in models with dispersed information. For instance, our
results open the door to provide model-consistent tests of the results in Kacperczyk, Nosal and
Sundaresan (2020), who theoretically characterize the relation between institutional ownership
and price informativeness, or Dávila and Parlatore (2021), who theoretically characterize the
relation between trading costs and price informativeness. Moreover, while the precise relation
between price informativeness and welfare remains an open question in general — despite some
recent attempts in particular environments, see e.g., Angeletos and Pavan (2007, 2009), Vives
(2017) and Pavan, Sundaresan and Vives (2022) — we hope that showing how to identify and
estimate price informativeness leads the way to making empirically-based statements about
social welfare in the future.

Remark 4. Informativeness vs. predictability. Even though price informativeness and
price/return predictability may seem closely connected, they are conceptually different notions.
Given our assumptions, Proposition 1 shows that running regressions of prices, which are
endogenous, on future payoffs, which are exogenous, allows us to recover price informativeness
consistently. This entails running a regression of a date t variable, ∆pt, on a future explanatory
variable, ∆xt+1, which contrasts with the well-established literature on return predictability
(Cochrane, 2005; Campbell, 2017).

Remark 5. Payoff interpretation. At the level of generality considered here, the payoff variable
xt could in principle represent any variable that satisfies Equations (1) and (2). That is, even
though it may seem that, for instance, dividends are the most natural payoff measure, the results
derived so far are agnostic about the exact nature of the payoff variable. We use this logic to
justify the choice of earnings, instead of dividends, as the payoff measure in the empirical
implementation of the results in Section 4. This observation may open the door to a higher
frequency implementation of our results as data become increasingly available.

2.7 Comparison to Existing Literature

There are two significant differences between our approach and the approach in, for instance,
Bai, Philippon and Savov (2016): i) we focus on relative price informativeness, in contrast to
forecasting price efficiency (FPE) introduced in Bond, Edmans and Goldstein (2012), and ii)
we provide formal identification results, which shapes our estimation approach based on time
series regressions. The following two remarks elaborate on these differences.

Remark 6. Alternative measures of informativeness. The notions of absolute and relative price
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informativeness defined above can be related to other variables that have been used to make
inferences about the informational content of prices. In particular, our measures of price
informativeness are linked to i) the posterior variance of the future payoff conditional on the
price and the current payoff, given by VP ≡ Var [ut|∆pt,∆xt] and ii) forecasting price efficiency
(FPE), given by VFPE ≡ Var [E [ut|∆pt,∆xt]], as defined in Bond, Edmans and Goldstein
(2012), through the Law of Total Variance, as follows

Var [ut|∆xt,∆χt]︸ ︷︷ ︸
τ−1
u|∆χt

= E

Var [ut|∆pt,∆xt,∆χt]︸ ︷︷ ︸
VP

∣∣∣∣∣∣∣∆xt,∆χt
+Var [E [ut|∆pt,∆xt,∆χt]|∆xt,∆χt]︸ ︷︷ ︸

VFPE

.

While VP corresponds to the residual uncertainty about future payoffs after observing the
price, VFPE measures the variation of the expectation of future payoffs after observing the price.
When uncertainty is Gaussian, for a Bayesian external observer who only learns from the price,
both variables correspond to

VP = 1
τπ + τu|∆χt

= 1− τRπ
τu|∆χt

and VFPE = τπ
τπ + τu|∆χt

1
τu|∆χt

= τRπ
τu|∆χt

. (13)

Equation (13) illustrates how both VP and VFPE inherit the units and scale of the volatility
about future payoffs, τ−1

u . In contrast, as we establish above, relative price informativeness,
τRπ , is a bounded, unit-free measure of informativeness. These properties give relative price
informativeness a clear economic interpretation that is independent of the environment analyzed.
To see this, note that

τRπ = Var [E [ut|∆pt,∆xt,∆χt]]
Var [ut|∆xt,∆χt]

.

Therefore, relative price informativeness measures the expected reduction in uncertainty about
the innovation to the payoff ut after observing the change in price ∆pt.

If the objective is to derive theoretical predictions, the difference in units of these measures
should not be a concern, since there is a one-to-one mapping between all these notions for a
given τu. However, when looking at the data, changes in VP or in VFPE can be driven either
by changes in the information contained in the price τRπ or by the volatility of the payoff τu.
Therefore, when making comparisons across assets or time periods, it seems desirable to use a
notion of informativeness that does not depend on the volatility of payoffs, hence our preference
for τRπ .

Equation (13) also highlights that linking VP or VFPE to the precision of the information
contained in prices requires making assumptions on distributions of priors, signals, and updating
procedures. For instance, to compute a posterior variance (VP ) it is necessary to take a stance
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on whether updating is Bayesian or not. Hence, the upshot of working with absolute and relative
price informativeness is that these notions do not require us to make assumptions on how an
external observer updates or on the shape of the underlying distributions.6

Remark 7. Identification results: time-series vs. cross-sectional regressions. Since the definition
of relative price informativeness in Section 2.2 is based on the precision of the price as a signal
over payoffs at different states of nature, and given the assumption that all underlying parameters
are time-invariant, our identification results in Propositions 1, 2, and 3 are based on time-
series regressions. Therefore, our identification results apply to time-series regressions, which
we then implement for a specific stock over a specific time period, as described in Section 4. To
account for the potential of time-varying parameters, we run rolling time-series regressions in
our empirical implementation.

One could conceive deriving identification results based on cross-sectional regressions of
changes in asset prices on changes in asset payoffs using data for multiple stocks at a given
point in time. For this alternative approach to be valid, it would be necessary to assume that
all underlying parameters (including the distributions of payoffs, signals, and noise) are the
same for all stocks at a given point in time. In that case, a cross-sectional regression would
recover a single measure of price informativeness — identical across all stocks since that is the
identification assumption. This is a highly implausible scenario, both conceptually, since there
is no prior reason for informativeness to be identical across all stocks, but also empirically, as
we we show direct evidence that the distributions of payoffs across stocks differ.

3 Structural Models

We have shown in Section 2 that it is sufficient to specify an asset pricing equation and a
stochastic process for asset payoffs to identify price informativeness. In this section, we explore
several fully specified environments that are consistent with Equations (1) and (2). First, we
study a model in which investors have private signals about future payoffs and orthogonal trading
motives in the form of random priors (sentiment). Subsequently, we study a representative agent
model similar to those used in the macro-finance literature. Finally, we study a model with
informed and uninformed investors, as in the classic literature on information and learning.7 To
simplify the analysis and to keep it closer to the existing theoretical literature, the price is the
only public signal observed by the investors in this section.

6Formally, while finding the precision of the unbiased signal about the innovation to the asset payoff contained
in the asset price, Var [πt|ut,∆xt,∆χt], does not require making distributional assumptions beyond the existence
of second moments, finding a posterior variance like Var [ut|∆pt,∆xt,∆χt] does require such assumptions.

7In the Internet Appendix, we present conditions on investors’ asset demands that are sufficient to generate
an asset pricing equation of the form assumed in Equation (2).
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The results in this section have a dual purpose. First, these applications show that
our identification results apply to economies i) with or without dispersed information among
investors, ii) with time-varying risk aversion/risk-premia, iii) in which investors may or may not
learn from prices, and iv) in which noise may arise from different sources. These applications
are particularly useful to highlight that our approach does not take a stance on the source
of the aggregate noise. Second, these applications allow us to provide a structural economic
interpretation of the empirical results presented in Section 4.

3.1 Sentiment as Noise

We start by considering a model in which investors’ sentiment is the source of noise in the price.
Starting from primitives allows us to understand which assumptions on investors’ behavior
endogenously determine an equilibrium pricing equation of the form assumed in Section 2.

Environment We consider a tractable overlapping generations model. Time is discrete, with
dates denoted by t = 0, 1, 2, . . . ,∞. The economy is populated by a continuum of investors,
indexed by i ∈ I, who live for two dates. Each investor i is born with wealth wi0 and has
well-behaved expected utility preferences over his terminal wealth wi1, with flow utility given by
Ui
(
wi1
)
, where U ′i (·) > 0 and U ′′i (·) < 0. We assume that the distribution of initial wealth is

bounded and i.i.d. across time and investor types.
There are two long-term assets in the economy: a risk-free asset in perfectly elastic supply,

with gross return Rf > 1, and a risky asset in fixed supply Q, whose date t (log) payoff is
xt = ln (Xt) and which trades at a (log) price pt = ln (Pt). The process followed by xt is given
by

∆xt+1 = µ∆x + ut, (14)

where ∆xt+1 = xt+1 − xt, µ∆x is a scalar, and x0 = 0. The realized payoff xt is common
knowledge to all investors before the price pt is determined. The realized payoff at date t + 1,
xt+1, is only revealed to investors at date t + 1. Note that Equation (14) is a special case of
Equation (1) when ρ = 0. We focus on the ρ = 0 case to simplify the exposition.

We assume that investors receive private signals about the innovation to the risky asset
payoff. Formally, each investor receives a signal about the payoff innovation ut given by

sit = ut + εist with εist ∼ N
(
0, τ−1

s

)
,

where εist ⊥ ε
j
st for all i 6= j, and ut ⊥ εist for all t and all i.

We also assume that investors have additional private trading motives coming from
heterogeneous priors that are random in the aggregate. This is a particularly tractable
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formulation that sidesteps many of the issues associated with classic noise trading while still
preventing full revelation of information — see Dávila and Parlatore (2021) for a thorough
analysis of this formulation, which extends the classic DSSW model (De Long et al., 1990) to
incorporate learning from prices. Formally, each investor i born at date t has a prior over the
innovations to the payoff difference ut given by

ut ∼i,t N
(
nit, τ

−1
u

)
,

where
nit = nt + εint with εint

iid∼ N
(
0, τ−1

n

)
,

and
∆nt = µ∆n + ε∆n

t with ε∆n
t ∼ N

(
0, τ−1

∆n

)
,

where n0 = 0, µ∆n is a scalar, and where ε∆n
t ⊥ εint for all t and all i. The variable nt, which

can be interpreted as the aggregate sentiment in the economy, is not observed and acts as a
source of aggregate noise, preventing the asset price from being fully revealing. Without loss of
generality, we assume that ut+s ∼i,t N

(
0, τ−1

u

)
for all s > 0.8

Each investor i born at date t optimally chooses a portfolio share in the risky asset, denoted
by θit, to solve

max
θit

Eit
[
Ui
(
wi1

)]
(15)

subject to a wealth accumulation constraint

wi1 =
(
Rf + θit

(
Xt+1 + Pt+1

Pt
−Rf

))
wi0, (16)

where the information set of an investor i in period t is given by Iit =
{
sit, n

i
t, {Xs}s≤t , {Ps}s≤t

}
.

Definition. (Equilibrium) A stationary rational expectations equilibrium in linear strategies
is a set of portfolio shares θit for each investor i at date t and a price function Pt such that: i) θit
maximizes the investor i’s expected utility given his information set and ii) the price function
Pt is such that the market for the risky asset clears at each date t, that is,

∫
θitw

i
0di = Q.9

In this class of models, it is well known that it is not possible to characterize in closed-form
the portfolio problem solved by investors and the equilibrium price — see e.g., Vives (2008).

8To simplify the analysis, we assume that investors do not learn from their priors and that the signals and
priors are identically distributed across investors. Our results can be easily extended to allow for heterogeneity
in τs, τu, and τn.

9It is well known that dynamic rational expectation models may feature multiple equilibria. Our approach is
valid for any given equilibrium that may arise.
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However, we show that it is possible to find a closed-form solution to the model in approximate
form.

Equilibrium Characterization In the Appendix, we show that the risky asset demand of
an investor i at date t can be approximated as

θit ≈
1
γi
k0 + k1Eit [pt+1 − xt+1] + Eit [∆xt+1]− (pt − xt)− rf

Varit [k1 (pt+1 − xt+1) + ∆xt+1]
,

where γi ≡ −wi0U
′′
i (wi0)

U ′i(wi0)
, rf = ln

(
Rf
)
, and k0 and k1 are scalars defined in the Appendix.

As we show in the Appendix, taking a first-order log-linear approximation of the first-order
condition, the portfolio choice of investor i in period t can be approximated by

θit ≈ αixxt + αiss
i
t + αinn

i
t − αippt + ψi,

where the coefficients αix, αis, αin, and αip are positive scalars that represent the individual
demand sensitivities to the contemporary payoff, the private signal, the private trading needs,
and the asset price respectively, and ψi can be a positive or negative scalar that incorporates the
risk premium. These coefficients are time invariant since we have assumed that the distribution
of investor types is time invariant and the wealth distribution across time and investor type is
i.i.d. Using the market clearing condition with this approximation and the information structure
described above yields a log-linear approximated price given by

pt ≈
αx
αp
xt + αs

αp
ut + αn

αp
nt + ψ

αp
,

where αh ≡
∫
αihw

i
0di denotes the wealth-weighted cross-sectional average of a given coefficient

αih and ψ =
∫
ψiwi0di −Q. Using this expression, we can map the equilibrium price process in

the model to the one assumed in the general framework.
First, we take a first-order Taylor expansion of an investor’s future marginal utility U ′

(
wi1
)

around the initial wealth level wi0. Second, we impose that terms of order (dt)2, that is, terms
that involve the product of two or more net interest rates, are negligible. Third, as in Campbell
and Shiller (1988), we take a log-linear approximation of returns around a predetermined
dividend-price ratio. Finally, we assume that the joint distribution of demand sensitivities
and risk aversion is time invariant.

Lemma 1. The price process assumed in Equation (2) in the general framework in Section 2
can be obtained endogenously as an approximation of the equilibrium price process in the model
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described in this section, i.e., the equilibrium price process is given by

∆pt ≈ φ+ φ0∆xt + φ1∆xt+1 + φn∆nt,

where the coefficients φ = 0, φ0 = αx
αp
− αs
αp
, φ1 = αs

αp
, and φn = αn

αp
are determined in equilibrium.

Lemma 1 and the payoff process assumed in this section imply that all the identification
results derived in the general framework in Section 2 can be applied in the context of the
fully specified model derived in this section. This connection allows us to give a structural
interpretation to the coefficients recovered from Regressions R1 and R2.

For example, the sensitivity of the price to the future payoff, φ1, is given by ratio of the
(wealth-weighted) averages of individual demand sensitivities to information and price αs

αp
.

Therefore, the more weight individual investors put on their private signals, the more sensitive
the price will be to the future payoff and, everything else equal, the higher price informativeness
will be (higher R2

∆x,∆x′−R2
∆x). Analogously, when investors put more weight on their orthogonal

trading motives, i.e., high αn, the price will be more sensitive to the aggregate sentiment and,
all else equal, price informativeness will be lower (lower R2

∆x,∆x′ −R2
∆x).

3.2 Representative Agent

In this section, we show how to map the canonical representative agent model widely used in
macro asset pricing to the setting in Section 2. This application shows that our identification
results do not rely on assuming dispersed information across investors and can accommodate
time-varying risk aversion.

Environment Suppose there is one representative agent in the model with sentiment
introduced in the previous section, 3.1. This is the same as having all investors i ∈ I receive the
exact same signal,

sit = ut + εst with εst ∼ N
(
0, τ−1

s

)
,

have the same prior, ut ∼i N
(
nt, τ

−1
u

)
, where

nt = nt + εnt with εnt
iid∼ N

(
0, τ−1

n

)
,

and have the same initial endowment wealth, wi0 = w0, and utility, γi = γ.

Equilibrium Characterization In this case, the log-linearly approximated price is equal to

pt ≈
αx
αp
xt + αs

αp
st + αn

αp
nt + ψ

αp
,
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where the coefficients αx, αs, αn, and αp are demand sensitivities and ψ is a constant.
Since all investors receive the same signal st and have the same prior nt, there is no

asymmetric information among investors in the model and, therefore, investors do not learn
from the price. However, the price contains information about the innovation ut for an external
observer who only learns from the price. The equilibrium price can be rewritten as

pt ≈
αx
αp
xt + αs

αp
ut + αs

αp
εst + αn

αp
nt + ψ

αp
.

From the perspective of an external observer, there are two sources of noise that prevent the
change in the price from being fully revealing: the noise in the signal εst and the investors’ prior
nt. It is easy to map the representative agent model into the framework developed in Section 2,
as the lemma below shows.

Lemma 2. The price process assumed in Equation (2) in the general framework in Section 2
can be obtained endogenously as an approximation of the equilibrium price process in the model
described in this section, i.e., the equilibrium price process is given by

∆pt ≈ φ+ φ0∆xt + φ1∆xt+1 + φn∆n̂t,

where the coefficients φ = 0, φ0 = αx
αp
− αs

αp
, φ1 = αs

αp
, and φn = αn

αp
are equilibrium outcomes,

and where ∆n̂t ≡ ∆nt + αs
αn

∆εst.

As in the previous section, Lemma 2 and the payoff process assumed allow us to apply all
the identification results derived in Section 2 within the representative agent model. This shows
that the price process in Equation (2) also encompasses models in which all investors share the
same information and there is no learning from the price. In fact, our general framework does
not require information to be dispersed in the economy and it can accommodate environments
with and without learning.

Finally, it is worth highlighting that it is easy to introduce time-varying risk aversion in this
framework — this would imply assuming that γ and consequently ψ vary over time, as γt and
ψt. In that case, time-varying risk aversion manifests itself as another source of noise.

3.3 Informed, Uninformed, and Noise Traders

Noise traders are a widely used modeling device in environments with dispersed information
to avoid dealing with fully revealing equilibria. The general framework in Section 2 applies
to settings with noise traders. This application highlights that our identification results
accommodate different forms of noise, which allows us to remain agnostic about the source
of noise in the economy.
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Environment Suppose that we are in the same model developed in Section 3.1 with the only
difference being that there are three types of investors: informed, uninformed, and noise traders.
Informed and uninformed investors share the same prior and only differ in the information they
receive. Informed investors receive a perfectly informative signal of the innovation to the payoff.
Uninformed investors and noise traders do not receive any signals. Mapping this to the model in
Section 3.1 implies that the prior distribution of the innovation ut for informed and uninformed
investors is

ut ∼i N
(
nt, τ

−1
u

)
,

where nt
iid∼ N

(
0, τ−1

n

)
and the precision of the signals for informed investors is τsi =∞ and for

uninformed investors is τsi = 0.
Finally, noise traders have private trading motives that are orthogonal to the innovation

to the payoff — these are the sole drivers of their demand. Formally, the demand of all noise
traders in period t is random and given by δt ∼ N

(
0, τ−1

N

)
. The noise trader demand is only

observed by noise traders.

Equilibrium Characterization In this case, the first-order log-approximated price is

pt ≈
αx
αp
xt + αs

αp
ut + αn

αp
nt + ψ

αp
+ δt
αp
, (17)

where αh ≡
∫
I∪U α

i
hw

i
0di denotes the wealth-weighted cross-sectional average of αih over the set

of informed and uninformed investors with αis = 0 for all uninformed investors, αin = 0 for all
informed investors, and ψ ≡

∫
I∪U ψ

iwi0di−Q.

Lemma 3. The price process assumed in Equation (2) in the general framework in Section 2,
can be obtained endogenously as an approximation of the equilibrium price process in the model
described in this section, i.e., the equilibrium price process is given by

∆pt ≈ φ+ φ0∆xt + φ1∆xt+1 + φn∆ñt,

where the coefficients φ = 0, φ0 = αx
αp
− αs

αp
, φ1 = αs

αp
, and φn = αn

αp
are equilibrium outcomes and

∆ñt ≡ ∆nt + 1
αn

∆δt.

Lemma 3 shows that all our identification results in Section 2 remain valid within the classic
information model in Grossman and Stiglitz (1980) with inelastic noise traders. Within the
model, only uninformed investors learn from the price and the only source of noise for them is
the noise trader demand. However, for an external observer who only learns from the price there
are two sources of noise embedded in the change in the price. The change in the noise trader
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demand ∆δt and the change in the prior of the investors ∆nt. Defining ∆ñt ≡ ∆nt + 1
αn

∆δt
allows us to clearly map this model into the general framework developed in Section 2. This
lemma together with the results in the previous two sections show that the price process assumed
in our general framework can accommodate different sources of noise that prevent the price from
being fully revealing for an external observer.

4 Empirical Implementation: Stock-Specific Price Informative-
ness

In this section, we use our identification results to construct and analyze measures of stock-
specific relative price informativeness. We exclusively report estimates of relative price
informativeness since — as shown in Section 2 — these allow for meaningful and easily
interpretable comparisons across stocks and over time. We recover a panel of stock-specific
measures of price informativeness by running rolling time-series regressions at the stock level.
In the next three subsections, we present our estimates based on Propositions 1, 2, and 3,
respectively.

4.1 Baseline Environment

This subsection implements the results in Proposition 1.

Data Description and Empirical Specification We initially provide a brief description
of the data and the sample selection procedure. The Internet Appendix includes a more
detailed description. We obtain information on stock prices and accounting measures from the
CRSP/Compustat dataset, as distributed by WRDS. Our sample selection procedure follows
the conventional approach described in Bali, Engle and Murray (2016). From the Center for
Research in Security Prices (CRSP), we obtain data on stock prices, market capitalization,
turnover, S&P500 status, and industry (SIC) classification for all common US-based stocks
listed on the NYSE, NASDAQ, and AMEX. From Compustat, we obtain accounting data that
includes earnings and book values, at both quarterly and annual frequencies. From Institutional
Brokers’ Estimate System (IBES), we obtain measures of analyst coverage.

Our analysis uses quarterly data, available from 1966 until 2017. To match the timing of our
model and to ensure that the accounting data were public on the trading date, we merge the
Compustat data with CRSP data three months ahead, although our findings are robust to using
alternative windows. We use the personal consumption expenditure index (PCEPI), obtained
from FRED, to deflate all nominal variables.
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We implement Proposition 1 by running time-series regressions for each individual stock —
indexed by j here — using year-on-year changes with overlapping data over rolling windows
of 40 quarters. By working with the model in log-differences, we sidestep concerns associated
with failures of stationary — see e.g., Campbell (2017). Considering year-on-year changes deals
with seasonality concerns. The use of rolling regressions makes the underlying assumption of
parameter stability over a given estimation window more plausible.

We denote by pjt the log price of stock j, adjusted for splits. We use earnings — as measured
by EBIT — as the relevant measure of payoffs, since stock-level measures of dividends are
problematic for different reasons. As discussed in Section 2, our model can be flexibly interpreted
to use earnings as the payoff measure. Since earnings can be negative, we compute ∆xjt as the
log year-on-year growth rate scaled by book equity (difference operators ∆ are year-on-year) .
Formally, in a given rolling window, we run time-series regressions of the form

∆pjt = β
j + βj0∆xjt + βj1∆xjt+4 + βjc ·∆w

j,q
t + εjt ⇒ R2,j

∆x,∆x′ (18)

∆pjt = ζ
j + ζj0∆xjt + ζjc ·∆w

j,q
t + ε̂jt ⇒ R2,j

∆x , (19)

where ∆pjt is a measure of capital gains, ∆xjt and its one-year ahead counterpart ∆xjt+4 are
measures of earnings growth, and wj,qt denotes a given set of controls/public signals. We use
the following firm-specific variables as public signals for all stocks: i) profitability, ii) dividend
ratio, iii) asset growth, and iv) market beta, following Koijen and Yogo (2019). Profitability
corresponds to the total operating profits divided by book equity and the dividend ratio to the
sum of total dividends over the past year divided by book equity. We estimate the regression
coefficients and errors using OLS. We respectively denote the R-squareds of the regressions
(18) and (19) by R2,j

∆x,∆x′ and the R2,j
∆x. Hence, Regression R1 maps to Equation (18), while

Regression R2 maps to Equation (19).
Consistent with Proposition 1, we recover relative price informativeness for stock j in a given

period/window from Equations (18) and (19) as follows:

τR,jπ =
R2,j

∆x,∆x′ −R
2,j
∆x

1−R2,j
∆x

.

After restricting our results to stocks with contiguous observations and whose maximum
leverage score across observations is lower than 0.95, we end up with a panel of price
informativeness measures for 4063 unique stocks.10 We have explored alternative criteria to
deal with outliers or abnormal observations — for instance, restricting the set of observations

10We compute leverage scores as the ith diagonal element of the projection matrix of the observations. Leverage
scores describe the influence that each value of the dependent variable has on the fitted value for that same
observation.
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Figure 2: Price informativeness: relative-frequency histogram
Note: Figure 2 shows a relative-frequency histogram of price informativeness for a representative time period,
the last quarter of 2015. The histogram features 1,398 stocks.

to those with βj1 ∈ [0, 1] — but this does not change our conclusions.11

Table 1 reports year-by-year summary statistics (every five years) of the distribution of stock-
specific price informativeness, starting in 1985. Throughout the paper, informativeness in year
t is computed over a rolling window of 40 quarters prior. We illustrate our results graphically
in Figure 2, which presents a relative-frequency histogram of price informativeness for a specific
time period (last quarter of 2015). The shape of this histogram is representative of other periods.

We find that the distribution of informativeness across stocks is right-skewed, with time-
series averages of the median and mean levels of price informativeness across all stocks and years
respectively given by 4.47% and 8.54%. Because the distribution of informativeness is skewed,
the median is often perceived as a better measure of central tendency. The 95% percentile
of the distribution stays below 0.34, which means that an external observer who only learns
from the price would rarely put more than a one-third weight on the price when updating his
beliefs to form a posterior over future payoffs. Since we have included additional controls in
the regressions, our results should be interpreted as the price informativeness for an external
observer who observes prices, past payoffs, and the public signals included as controls. We
present results excluding the additional controls in the Internet Appendix, which correspond

11The fraction of stocks with negative βj1 coefficients is between 35% and 45% in any given rolling window.
Although there are models that can rationalize this, negative βj1 coefficients can also be a sign of model
misspecification.
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to estimates of informativeness from the perspective of an external observer who only observes
prices and past payoffs.

Price Informativeness in the Cross Section By computing stock-specific measures of
price informativeness, we are able to establish a new set of cross-sectional patterns relating price
informativeness to stock characteristics. We focus on six stock characteristics that have been
widely used to explain patterns in the cross section of stock returns — see, e.g., Bali, Engle and
Murray (2016). These are i) size, measured as the natural log of stocks market capitalization,
ii) value, measured as the ratio between a stock’s book value and its market capitalization, iii)
turnover, measured as the ratio between trading volume and shares outstanding, iv) idiosyncratic
volatility, measured as the standard deviation — over a 30 month period — of the difference
between the returns of a stock and the market return, v) institutional ownership, measured as
the proportion of shares held by institutional investors, and vi) analyst coverage, measured as
the number of analysts covering the stock in IBES data. Since the last two variables are heavily
correlated with size, we also provide results on institutional ownership and analyst coverage
orthogonalized to size.

In Table 2, we report the estimates of panel regressions of relative price informativeness (in
twentiles) on each of the six explanatory variables, using year fixed effects. The coefficients
that we report can be interpreted as a weighted average of the slopes of running year-by-year
regressions of price informativeness of a given explanatory variable (size, value, turnover, return
volatility, institutional ownership, analyst coverage). Figures IA-2 through IA-6 in the Internet
Appendix provide an alternative graphical illustration of our results. These figures show that
the cross-sectional relations identified in Table 2 are stable over time. The last two rows of Table
2 report the estimates of panel regressions of the residual relative price informativeness after
controlling for size on institutional ownership and analyst coverage.

Our cross-sectional analysis yields several robust patterns. First, we find a strong positive
cross-sectional relation between a stock’s size (market capitalization) and price informativeness;
that is, large stocks have higher price informativeness. Second, we find a negative cross-sectional
relation between a stock’s book-to-market ratio and price informativeness; that is, value stocks
have lower price informativeness. Third, we find a strong positive cross-sectional relation between
a stock’s turnover and price informativeness; that is, stocks that trade frequently have higher
price informativeness. Fourth, we find a positive cross-sectional relation between a stock’s
idiosyncratic return volatility and price informativeness; that is, stocks whose returns are more
volatile have higher price informativeness.12 We also find a strong positive cross-sectional

12Dávila and Parlatore (2023) provides a systematic analysis of the relation between volatility and price
informativeness.
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relation between a stock’s institutional ownership share and price informativeness, that is, stocks
owned mostly by institutional investors have higher price informativeness. Finally, we find that
price informativeness is strongly positively correlated with analyst coverage, that is, stocks that
are covered by more analysts have higher price informativeness.

Institutional ownership and analyst coverage are highly correlated with the size of the stock.
When we look at the correlation between price informativeness and institutional ownership and
analyst coverage beyond that implied by size, we find that the positive correlation between
price informativeness and institutional ownership and the correlation between analyst coverage
and price informativeness decrease substantially. These results are consistent with institutional
ownership being driven by passive investors or investors that are focused on the long run and it
suggests that while analysts may help to incorporate information into the price, most investors
trading large stocks do not rely on analysts as their main source of information. Finally, if one
thinks of large and high turnover stocks as being cheaper to trade, in the sense of price impact
being lower, it makes sense that informed investors would gravitate towards them when choosing
which stocks to learn about and hence, increase the price informativeness. At the same time,
highly liquid stocks may have a different investor base that is more focused on the short run,
which would also lead us to expect the correlations we observe.

Figures 3 and 4 illustrate additional cross-sectional patterns of the behavior of informa-
tiveness by exchange, S&P 500 status, and sector. Instead of focusing on mean or median
comparisons, we find it more informative to graphically compare the distributions of informa-
tiveness by characteristic after extracting year fixed effects. Even though the distributions of
informativeness differ across characteristics, the relations seem less strong than those identified
in Table 2. First, we compare across exchanges and find that stocks listed in the NYSE have
higher median informativeness than those in the NASDAQ, which appear to be as informative as
those listed in the AMEX. Second, we study whether price informativeness varies among stocks
that belong to the S&P500 and those that do not. Consistent with our findings on size, we find
that stocks outside of the S&P have lower price informativeness on average. Finally, we study
the behavior of price informativeness across sectors. Median price informativeness is highest in
the manufacturing and wholesale/retail sectors and lowest in the service sector.

Price Informativeness over Time: Aggregate Results An advantage of computing stock-
specific measures of price informativeness is that it allows us to study how the distribution of
stock-specific price informativeness evolves over time.13 Table 1 can be used to infer the time

13To keep the paper focused, we exclusively study the behavior of the panel of stock-specific price informativeness
measures. There is scope to apply our approach to aggregate data in order to generate a time-series of aggregate
price informativeness. There is also scope to further explore the time series evolution of informativeness after
grouping stocks by characteristics, as we discuss in the next section.
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Table 1: Price informativeness: year-by-year summary statistics

t Median Mean SD Skew Kurt P5 P25 P75 P95 n

1985 0.0492 0.0885 0.1105 2.0898 4.7510 0.0010 0.0116 0.1146 0.3110 360
1990 0.0407 0.0779 0.0952 2.0233 4.5793 0.0020 0.0127 0.1063 0.2777 728
1995 0.0304 0.0648 0.0845 2.3804 7.8812 0.0010 0.0092 0.0903 0.2358 1118
2000 0.0501 0.0878 0.1021 1.9424 4.7537 0.0020 0.0140 0.1235 0.2913 1095
2005 0.0470 0.0852 0.1045 2.1060 5.4419 0.0012 0.0112 0.1200 0.2957 1256
2010 0.0474 0.0924 0.1105 1.7832 3.3741 0.0014 0.0125 0.1335 0.3399 1458
2015 0.0484 0.0918 0.1101 1.8070 3.5715 0.0013 0.0133 0.1314 0.3284 1476

Note: Table 1 reports year-by-year summary statistics (every five years) on the panel of price informativeness
estimates. It provides information on the median; mean; standard deviation; skewness; excess kurtosis; and 5th,
25th, 75th, and 95th percentiles of each yearly distribution, as well as the number of stocks in each year. This
table averages the quarterly measures of price informativeness for a given year before computing the summary
statistics.
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Figure 3: Cross-sectional results (2)

Note: The left panel in Figure 3 shows a box plot by exchange of the residuals of a regression of relative price
informativeness on year fixed effects. The left panel in Figure 3 shows a box plot by S&P 500 status of the
residuals of a regression of relative price informativeness on year fixed effects. The solid middle line represents
the median. The top and bottom of the box represent the 75th and 25th percentiles. The whiskers extend up to
1.5 times the interquartile range.
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Table 2: Cross-sectional results (1)

Estimate Std. Error t-stat

Size 0.004667 0.000284 16.45
Value -0.010120 0.000820 -12.34
Turnover 0.001103 0.000042 26.04
Idiosyncratic Volatility 0.038921 0.012887 3.02
Institutional Ownership 0.058937 0.001906 30.92

Analysts Covering 0.002218 0.000121 18.26
Institutional Ownership (Residualized) 0.007705 0.000621 12.41
Analysts (Residualized) 0.000061 0.000030 2.06

Note: Table 2 reports the estimates (âc1) of panel regressions of price informativeness on cross-sectional
characteristics (in twentiles) with year fixed effects (ξt): τR,bπ,t = ac0 + ac1c

b
t + ξt + εb,t, where τR,b,tπ denotes the

average price informativeness per bin (twentile) in a given period, cbt denotes the value of the given characteristic
per bin (twentile) in a given period, ξt denotes a year fixed effect, ac0 and ac1 are parameters, and εb,t is an error
term. Figures IA-2 through IA-6 provide the graphical counterpart of the results in this table. Size is measured
as the natural log of stock market capitalization, value is measured as the ratio between a stock’s book value
and its market capitalization, turnover is measured as the ratio between trading volume and shares outstanding,
idiosyncratic volatility is measured as the standard deviation — over a 30 month period — of the difference
between the returns of a stock and the market return, institutional ownership is measured as the proportion of a
stock held by institutional investors, and analyst coverage measured as the number of analysts covering the stock
in a given quarter. The last two rows provide the estimates of the residual of price informativeness on size on
institutional ownership and analyst coverage.

evolution of the distribution of informativeness. To better illustrate the results, we show the
behavior of the median, mean, and standard deviation of the cross-sectional distribution of
informativeness between 1985 and 2017 graphically in Figure 5.14

We find that both the median and the mean of the distribution of informativeness feature
increasing trends. The median moves from roughly 4% to 4.5% between 1985 and 2017, while the
mean moves from roughly 7.5% in 1986 to roughly 9% by 2017. We also find that the standard
deviation of informativeness has a positive long-run trend in our sample. In this case, there are
spikes in the cross-sectional standard deviation of informativeness around the early 2000’s and
the global financial crisis of 2008 — other measures of dispersion have similar behavior.

14We start our analysis in 1985 due to small sample sizes in prior years.
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Figure 4: Cross-sectional results (3)

Note: Figure 4 shows a box plot by one-digit SIC industry code of the residuals of a regression of relative price
informativeness on year fixed effects. The solid middle line represents the median. The top and bottom of the
box represent the 75th and 25th percentiles. The whiskers extend up to 1.5 times the interquartile range.
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Figure 5: Price informativeness over time: aggregate results

Note: The left panel in Figure 5 shows the time-series evolution of the cross-sectional mean and median relative
price informativeness. The right panel in Figure 5 shows the time-series evolution of the cross-sectional standard
deviation of price informativeness. The red dashed lines show linear trends. In both panels, the dots correspond
to the average within a quarter of the price informativeness measures computed using year-on-year changes and
overlapping quarterly data.
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Price Informativeness over Time: Cross-Sectional Characteristics We also study the
evolution of the distribution of stock-specific price informativeness over time across the six
stock characteristics described above: size, turnover, value, idiosyncratic volatility, institutional
ownership, and analyst coverage. Figure 6 shows the average and the standard deviation
of the top and bottom halves of the distribution of price informativeness along each of the
characteristics.

We find that the gap in price informativeness among large and small stocks has increased
over time. This fact, together with the higher increase in dispersion in price informativeness for
larger stocks, suggests that price informativeness for large and small stocks is diverging. The
top and bottom of the distribution of informativeness according to turnover, value, institutional
ownership, and analyst coverage have evolved in parallel over the period studied here, while
price informativeness for stocks with higher idiosyncratic volatility is lower in recent years.

Interpretation of Empirical Findings through Structural Models Finally, note that
it is possible to interpret the empirical findings presented in this section through the lens of
the structural models developed in Section 3. In particular, if one were merely interested in
knowing the precision of the signal contained in asset prices about future payoffs, the empirical
results we have just presented directly conclude that such signal is more precise for large, high
turnover, high idiosyncratic volatility, and high institutional ownership stocks, and has become
more precise on average over the last few decades.

In terms of deeper primitives, our cross-sectional empirical findings are consistent with
models in which investors have relatively more precise private information about large, high
turnover, and high institutional ownership stocks, while our time-series findings are consistent
with an interpretation in which, over the last decades, on average private information has
increased relative to the noise in prices. That said, cross-sectional and time-series interpretations
of our empirical findings can be consistent with other changes in primitives in alternative models.
We provide a more detailed discussion of possible interpretations of these findings in Section F
in the Internet Appendix.

4.2 Unlearnable Payoff Component

In this subsection, we implement the results derived in Proposition 2 to recover stock-specific
measures of price informativeness one period ahead when there is an unlearnable component of
the future payoff. We parallel the analysis of Section 4, but now implement Regressions R1U
and R2U mapping the average analyst forecast to the learnable component of the payoff.

In addition to the data described in the previous section for prices, earnings and controls, we
need a measure of the learnable component of earnings to implement the results in Proposition
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(a) Mean price informativeness over time across characteristics
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(b) Standard deviation of price informativeness over time across characteristics

Figure 6: Price informativeness over time: cross-sectional characteristics

Note: Each of the panels in Figures 6a and 6b shows the time-series evolution of the mean relative price
informativeness (Figures 6a) and its standard deviation (Figure 6b) for the top and bottom of the distribution of
price informativeness for each characteristic (size, turnover, value, idiosyncratic volatility, institutional ownership,
and analyst coverage). The red dashed lines correspond to the top half of the distribution, while the solid blue
lines correspond to the bottom half of the distribution. The green dotted line in the last panel corresponds to
stocks with no analyst coverage. In this figure, stocks are assigned to each half every quarter and observations
are aggregated at the annual level.
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2. For this purpose, we use four quarters ahead IBES analyst forecasts of earnings growth rates
for the period 1984-2017.15 We construct our measure of the learnable component of earnings
at t by taking the average four quarters ahead analyst growth forecast for period t.

Analogous to our implementation of Proposition 1, we implement Proposition 2 by running
time-series regressions for each individual stock over rolling windows of 40 quarters using year-
on-year changes and overlapping quarterly data. We denote by f jt our measure of the learnable
component of earnings computed as the logarithm of the average four quarters ahead analyst
growth rate forecast for period t. Formally, in a given rolling window, we run the following
time-series regressions:

∆pjt = β
j + βj0∆xjt + βuj1 f jt + βuj2 f jt+4 + βjc ·∆w

j,q
t + εujt ⇒ R2,j

f,f ′ (20)

∆pjt = ζ
uj + ζuj0 ∆xjt + ζuj1 f jt + ζjc ·∆w

j,q
t + ε̂ujt ⇒ R2,j

f , (21)

where ∆pjt is a measure of capital gains, ∆xjt is a measure of earnings growth, f jt is the log of the
average analyst forecast, issued at t−4, of the change in earnings between t−4 and t normalized
by book equity at t− 4 plus one, f jt+4 is its one year ahead counterpart, and ∆wj,qt are publicly
observed signals. As in the previous section, we use the following firm-specific variables as public
signals: i) profitability ii) dividend ratio iii) asset growth, and iv) market beta.

Consistent with Proposition 2, we recover relative price informativeness for stock j in a given
window from Equations 20 and 21

τR,jπ =
R2,j
f,f ′ −R

2,j
f

1−R2,j
f

.

Figure 7 shows the distribution of price informativeness under the assumption that there is
an unlearnable component of earnings for a representative period (last quarter of 2015). The
shape of the distribution is similar to the one in Figure 2, with the main difference that there
are fewer stocks with price informativeness close to zero. This is reflected in a mean price
informativeness in 2015 of 9.29% estimated under unlearnable component model compared to
8.54% estimated under the assumptions of Proposition 1. This pattern is consistent throughout
all our rolling window estimates and can be appreciated by comparing Figure 5 with Figure 8.
The correlation between our estimates with and without an unlearnable component of earnings
is 0.234.

15As is usual with this data, we adjust per-share based forecast for splits using the CRSP split factor data.
We then construct summary estimates by following guidance from WRDS to most closely match IBES summary
data.
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Figure 7: Price informativeness about learnable component: relative-frequency histogram
Note: Figure 7 shows a relative-frequency histogram of price informativeness about the learnable component of
future earnings for a representative time period, the last quarter of 2015. The histogram features 370 stocks.
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Figure 8: Price informativeness about learnable component over time: aggregate results

Note: The left panel in Figure 8 shows the time-series evolution of the cross-sectional mean and median relative
price informativeness about the learnable component of future earnings. The right panel in Figure 8 shows the
time-series evolution of the cross-sectional standard deviation of price informativeness. The red dashed lines show
linear trends starting in 1994. In both panels, the dots correspond to the average within a quarter of the price
informativeness measures computed using year-on-year changes and overlapping quarterly data.
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Figure 8 shows the behavior of the median, mean, and standard deviation of the cross-
sectional distribution of price informativeness between 1993 and 2017. We find that the mean,
median and standard deviation increase during this time period. The median moves from roughly
3% in 1994 to 5% in 2017, while the mean moves from almost 5% to almost 11% between 1994
and 2017. In turn, the standard deviation of informativeness has a positive long-run trend
in our sample. These trends, and the cross sectional results presented in the Appendix, are
qualitatively consistent with our findings in the previous section.16

Our measure of the learnable component of the payoff is by no means perfect. The main
assumption behind the choice of proxy for the learnable component of earnings is that analysts
actually try to predict future earnings with their forecasts. A potential issue with this measure
is the response of analyst forecasts to prices described in Chaudhry (2023). If this response is
associated with the information prices contain about future earnings, this dependence is not a
concern for our approach. However, any mechanical response of forecasts to prices makes our
choice of proxy noisy while still inducing a high R-squared in our regression.

4.3 Longer Horizons

Our empirical analysis so far has focused on price informativeness one year ahead. However,
one can be interested in learning about earnings growth at longer horizons. In this subsection,
we implement the results in Proposition 3 to estimate price informativeness about earnings at
longer horizons using time-series regressions in rolling windows. More specifically, in a given
rolling window, we run the following regressions:

∆pjt = β
j + βj0∆xjt + βj1∆xmjt + βjc ·∆w

j,q
t + εjt ⇒ R2,j

∆x,∆xm (22)

∆pjt = ζ
j + ζj0∆xjt + ζjc ·∆w

j,q
t + ε̂jt ⇒ R2,j

∆x , (23)

where ∆pjt is a measure of year-on-year capital gains, ∆xjt is a measure of year-on-year earnings
growth, ∆xmjt measures earnings growths between t and t+m, and wj,qt denotes a given set of
controls/public signals. As in our main specification, we use the following aggregate variables as
public signals for all stocks: i) profitability, ii) dividend ratio, iii) asset growth, and iv) market
beta. We estimate the regression coefficients and errors using OLS. We respectively denote the
R-squareds of the regressions (22) and (23) by R2,j

∆x,∆xm and the R2,j
∆x. Hence, Regression R1m

maps to Equation (22), while Regression R2 maps to Equation (23).
Table 3 shows the distribution of the average price informativeness across the different

rolling windows at different yearly horizons. We find that price informativeness decreases as
16In the Appendix, we provide cross-sectional results for the implementation of Proposition 2, as well as

summary statistics year-by-year under this specification.
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Table 3: Distribution of average price informativeness at different horizons

Tenor Mean Std. Dev P5 P95

1 0.0841 0.1053 0.000379 0.308
2 0.0638 0.0843 0.000248 0.243
3 0.0536 0.0702 0.000242 0.202
4 0.0553 0.0724 0.000226 0.210
5 0.0542 0.0703 0.000246 0.202

Note: Table 3 shows results for price informativeness about growth rates 1, 2, 3, 4, and 5 years ahead. The table
reports the mean, the standard deviation and the 5th and 95th percentiles of average price informativeness across
different rolling windows for the different horizons.

one increases the number of periods ahead. This seems natural, since prices are likely to be less
informative over payoffs further in the future.

5 Limitations

As in any structural model, our results identifying price informativeness are linked to model
assumptions. Moreover, the frequency and type of available data used in the estimation call
for caution when drawing conclusions from the estimates of informativeness we present in this
paper, both in the cross section and over time. With the goal of aiding future research, we
highlight several limitations of our approach in this section.

On the theoretical side, the central assumption behind our results is the linearity of prices
(i.e., log price differences). Finding new identification results for notions of informativeness in
nonlinear models, like the one in Albagli, Hellwig and Tsyvinski (2015), is a natural progression.
Moreover, our analysis purposefully abstracts from feedback between prices and fundamentals,
summarized in Bond, Edmans and Goldstein (2012) and tested in Chen, Goldstein and Jiang
(2006). Deriving identification results in models with two-way feedback between asset prices and
payoffs seems to be another fruitful avenue for future research. There is also scope to connect
informativeness measures with social welfare, as discussed in Remark 3, and to better account
for the role played by discount rates. Finally, as explained at the end of Section 4.1, drawing
conclusive statements about changes in primitives requires additional modeling assumptions
(and additional data).

On the measurement side, a key challenge for our approach is that we do not directly observe
the learnable component of earnings. This lack of observability leads us to use the average analyst
forecast as a proxy in the empirical implementation of our identification results when allowing
for an unlearnable component of earnings. While this is a reasonable approach, it is far from
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ideal, and there is value in exploring alternative empirical designs to address this issue.
Our measure of informativeness is horizon dependent and focuses on informativeness about

earnings. Building on our approach, there is scope to develop and estimate measures of
informativeness that account for the role of prices as signals over multiple horizons and
about different notions of payoffs. It is important to note that, despite conducting multiple
robustness checks, looking at different horizons, varying the definition of payoffs/fundamentals,
and modifying the set of public signals could lead to finding different conclusions.

Given the rapid pace of information flow in financial markets, using higher frequency data
could also provide more precise estimates of informativeness in alternative contexts. Using data
available at higher frequencies can also ameliorate concerns associated with parameter instability,
which the current draft addresses via rolling windows. The central challenge associated with a
higher frequency approach is the need to have valid measures of payoffs/fundamentals.

6 Conclusion

We have shown that the outcomes of regressions of changes in asset prices on changes in asset
payoffs can be combined to recover exact measures of price informativeness within a large class
of linear/linearized models. Empirically, we compute a panel of stock-specific measures of price
informativeness and find that the median and mean levels of price informativeness fluctuate
around levels of 4.5% and 8.5%, respectively. These values, which can be interpreted as the
weight that an external observer who learns from the price puts on the price signal when forming
a posterior belief about future payoffs, measure the precision of the public signal contained in
prices about future payoffs. Cross-sectionally, we find that price informativeness is higher for
stocks with higher market capitalization, that trade more frequently, and that have a higher
institutional share and higher analyst coverage. Over time, we find that mean and median price
informativeness have steadily increased since the mid-1980s. Our framework allows for public
signals, noise that is correlated to payoff innovations, an unlearnable payoff component, and
makes it to possible to study informativeness at different horizons.

Our identification results open the door to answering a broad set of questions. Empirically,
there is scope to explore further the relation between price informativeness measures and other
characteristics in the cross section or over time. It also seems worthwhile to document and
explain the behavior of price informativeness in different contexts, perhaps internationally or
in different markets. Our methodology can also be used to empirically assess the effect of
policies on the ability of markets to aggregate information. Theoretically, our results can be
used to discipline theories of information and learning in financial markets. There is also scope
to export our approach to identification to other environments in which structurally recovering
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the informativeness of endogenous signals is important, for instance, auctions, macroeconomic
environments, or labor markets.
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Appendix
A Proofs and Derivations: Section 2

Proof of Proposition 1. (Identifying price informativeness)

For completeness, we reproduce here Regressions R1 and R2:

∆pt = β + β0∆xt + β1∆xt+1 + β2 ·∆χt + et (R1)

∆pt = ζ + ζ0∆xt + ζ2 ·∆χt + eζt . (R2)

Note that the R-squareds of both regressions, respectively, can be expressed as follows

R2
∆x,∆x′ = 1− Var [et]

Var [∆pt]
and R2

∆x = Var [ζ0∆xt + ζ2 ·∆χt]
Var [∆pt]

.

After substituting Equation (1) in Equation (2), the following relation holds

∆pt = φ+ φ1µ∆x + φnµ∆n + (φ0 + ρφ1) ∆xt + φχ ·∆χt + (φ1 + φnω)ut + φnε
∆n
t . (24)

By comparing Regression R1 with the structural Equation (2), it follows that β = φ + φnµ∆n,
β0 = φ0, β1 = φ0 + φnω, and et = φnε

∆n
t . By comparing Regression R2 with the structural

Equation (24), it follows that ζ = φ + φ1µ∆x + φnµ∆n, ζ0 = φ0 + ρφ1, ζ2 = φχ and
eζt = β1ut + φnε

∆nt .
On the one hand, note that β2

1
Var[et] = τπ. Given the assumptions on ut and ε∆n

t , it is
straightforward to show that the OLS estimates of Regressions R1 are consistent, which implies
that price informativeness can be consistently estimated as β̂2

1
ˆVar[et]

. Formally, plim (τ̂π) =

plim
(

β̂2
1
ˆVar[et]

)
= τπ.

On the other hand, when estimating R2 via OLS, the error term eζt is correlated with ∆χt
since ∆χt = ωut + ε∆χ

t . Then, the estimated coefficient for ∆χt will be given by

ζ̂2 = φχ + (φ1 + ρφn) λ̂χ = ζ2 + β1λ̂χ,

where λ̂χ = (Var [∆χt])−1 Cov [∆χt, ut] is the coefficient in the regression R3 below

ut = λ+ λχ ·∆χt + eλt . (R3)
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From Regression (R2) we have

Var [∆pt] = Var
[
ζ̂0∆xt + ζ̂2 ·∆χt

]
+ Var

[
êζt

]
,

which can be expressed as

1 =
Var

[
ζ̂0∆xt + ζ̂2 ·∆χt

]
Var [∆pt]︸ ︷︷ ︸

=R2
∆x

+
Var

[
êζt

]
Var [et]

Var [et]
Var [∆pt]︸ ︷︷ ︸

=1−R2
∆x,∆x′

. (25)

The errors in Regression (R2) are given by

êζt = β1ut + φnε
∆nt − β1λ̂χ∆χt

êζt = β1
(
1− λ̂′χω

)
ut + φnε

∆nt − β1λ̂χ · ε∆χt
t .

Then

Var
[
êζt

]
= β2

1Var [ut] + Var [et]− β2
1Cov [∆χt, ut]′Var [∆χt]−1 Cov [∆χt, ut] .

Moreover, using the Law of Total Variance, we have that

Var [ut] = E [Var [ut|∆χt]] + Var [E [ut|χt]]

= E [Var [ut|∆χt]] + Var
[
λ̂′χ∆χtλ̂χ

]
= E [Var [ut|∆χt]] + λ̂′χVar [∆χt] λ̂χ

= E [Var [ut|∆χt]] + Cov [∆χt, ut]′Var [∆χt]−1 Cov [∆χt, ut] .

Then, the expected posterior variance of ut given χt is τ−1
u|∆χ ≡ E [Var [ut|χt]], so

Var [ut]− τ−1
u|∆χ = Cov [∆χt, ut]′Var [∆χt]−1 Cov [∆χt, ut] .

Therefore, we can write

Var
[
êζt

]
Var [et]

=
β2

1Var [ut] + Var [et]− β2
1

(
Var [ut]− τ−1

u|∆χ

)
Var [et]

=
Var [et] + β2

1τ
−1
u|∆χ

Var [et]
= 1 +

β2
1τ
−1
u|∆χ

Var [et]
= 1 + τπ

τu|∆χ
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Using this in Equation (25), we get

R2
∆x,∆x′ −R2

∆x
1−R2

∆x
= τπ
τu|∆χ + τπ

≡ τRπ .

Note that if variables are normally distributed, τ−1
u|∆χ = Var [ut|χt] and the expression above is

the Kalman gain associated with the unbiased signal contained in the price πt for an external
observer who has access to the public signals χt before seeing the price.

Proof of Proposition 2. (Identifying price informativeness)

The proof follows the proof of Proposition 1 replacing the future payoff by the future learnable
component of the payoff and including the realized learnable component of the payoff as a public
signal.

Proof of Proposition 3 (Identifying price informativeness at longer horizons)

The proof follows the same structure as the proof of Proposition 1. First note that absolute
price informativeness about the m-period ahead change in the payoff, ∆xmt , is given by

τmπ ≡ (Var [πmt |∆xt+m,∆xt,∆χt])
−1

=

Var
 φn

φm +
∑M
l=1,l 6=m φlK

l
m

ε∆n
t +

M∑
l=1,l 6=m

φl
(
∆xlt −K l

m∆xmt
)

φm +
∑M
l=1,l 6=m φlK

l
m

∣∣∣∣∣∣∆xmt ,∆xt,∆χt
−1

=

( φn

φm +
∑M
l=1,l 6=m φlK

l
m

)2

τ−1
∆n + Var

 M∑
l=1,l 6=m

φl
(
∆xlt −K l

m∆xmt
)

φm +
∑M
l=1,l 6=m φlK

l
m

∣∣∣∣∣∣∆xmt ,∆xt,∆χt
−1

=

( φn

φm +
∑M
l=1,l 6=m φlK

l
m

)2

τ−1
∆n + Var

 M∑
l=1,l 6=m

φl
(
∆xlt −K l

m∆xmt
)

φm +
∑M
l=1,l 6=m φlK

l
m

∣∣∣∣∣∣∆xt,∆χt
−1

since
∑M

l=1,l 6=m φl(∆xlt−Kl
m∆xmt )

φm+
∑M

l=1,l 6=m φlKl
m

is orthogonal to ∆xmt by construction. Moreover, not that

φm +
∑M
l=1,l 6=m φlK

l
m can be consistently estimated by βm2 through OLS.

Moreover, from Regression R2 we have

1 =
Var

[
ζ̂0∆xt + ζ̂2 ·∆χt

]
Var [∆pt]︸ ︷︷ ︸

=R2
∆x

+
Var

[
êζt

]
Var

[
êλt
] Var

[
êλt

]
Var (∆pt)︸ ︷︷ ︸

=1−R2
∆x,∆xm

, (26)
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where ζ̂0, ζ̂2, êζt , and êλt are OLS estimates with

Var
[
êζt

]
Var

[
êλt
] =

Var
[
êζt

]
(βm2 )2 Var [πmt |∆xmt ,∆xt,∆χt]

= τmπ
λ2
m

Var
[
êζt

]
and

Var
[
êζt

]
= φ2

nτ
−1
∆n + Var

[
M∑
l=1

φl∆xlt

]
− Cov

[
Xt,

M∑
l=1

φl∆xlt

]′
Var (Xt)−1 Cov

[
Xt,

M∑
l=1

φl∆xlt

]

where Xt ≡ [∆xt,∆χt]. Note that the estimated error takes into account that Xt is correlated
with eζt . Moreover, using the Law of Total Variance we have

Var
[
M∑
l=1

φl∆xlt

]
−Cov

[
Xt,

M∑
l=1

φl∆xlt

]′
Var (Xt)−1 Cov

[
Xt,

M∑
l=1

φl∆xlt

]
= E

[
Var

[
M∑
l=1

φl∆xlt

∣∣∣∣∣∆xt,∆χt
]]
,

where we can rewrite

Var
[
M∑
l=1

φl∆xlt

∣∣∣∣∣∆xt,∆χt
]

= Var

φm +
M∑

l=1,l 6=m
K l
mφl

∆xmt +
M∑

l=1,l 6=m
φl
(
∆xlt −K l

m∆xmt
)∣∣∣∣∣∣∆xt,∆χt


=

φm +
M∑

l=1,l 6=m
K l
mφl

2

Var [∆xmt |∆xt,∆χt]

+ Var

 M∑
l=1,l 6=m

φl
(
∆xlt −K l

m∆xmt
)∣∣∣∣∣∣∆xt,∆χt


= (βm2 )2 Var [∆xmt |∆xt,∆χt] + Var

 M∑
l=1,l 6=m

φl
(
∆xlt −K l

m∆xmt
)∣∣∣∣∣∣∆xt,∆χt


Then, using the definition of τmπ and τ∆xmt |∆χ we have

Var
[
êζt

]
Var

[
êλt
] = τmπ

(βm2 )2

φ2
nτ
−1
∆n + Var

 M∑
l=1,l 6=m

φl
(
∆xlt −K l

m∆xmt
)∣∣∣∣∣∣∆xt,∆χt

+ (βm2 )2 Var [∆xmt |∆xt,∆χt]


=
τmπ + τ∆xmt |∆χ

τ∆xmt |∆χ
.

Plugging this in Equation (26) we have

R2
∆x,∆xm −R2

∆x
1−R2

∆x
= τmπ
τmπ + τm|χ

≡ τmRπ ,

which proves our result.
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Internet Appendix
For Online Publication Only

Section B of this Internet Appendix describes in more detail the data used for the empirical
implementation of the results in Section 4. Section C of this Internet Appendix reports additional
empirical results. First, we include a series of figures that give more insight into the cross-sectional
results presented in Table 2. Second, we present additional cross-sectional results under the assumption
that there is an unlearnable component of earnings. Finally, we present the cross-sectional correlation
between price informativeness measured in year t and price informativeness measured in prior years.
Section E of this Internet Appendix includes additional results on the identification of absolute price
informativeness. Section F provides possible structural interpretations of the empirical findings. Section
G of this Internet Appendix considers three alternative specifications. First, we extend our approximate
results to the case in which the payoff follows a stationary AR(1) process. Second, we develop our
identification results using an exact linear formulation for the price process under difference-stationary
and stationary specifications for the payoff.

A Proofs and Derivations: Section 3
Portfolio Demand Approximation The optimality condition of an investor who maximizes
Equation (15) subject to the wealth accumulation constraint in Equation (16) is given by

E
[
U ′i
(
wi1
)(Xt+1 + Pt+1

Pt
−Rf

)∣∣∣∣ Iit] = 0. (27)

We approximate an investor’s first-order condition in three steps.
First, we take a first-order Taylor expansion of an investor’s future marginal utility U ′

(
wi1
)
around

the current date t wealth level wi0. Formally, we approximate U ′
(
wi1
)
as follows

U ′
(
wi1
)
≈ U ′

(
wi0
)

+ U ′′
(
wi0
)

∆wi1,

which allows us to express Equation (27) as

U ′
(
wi0
)
Ei
[
Xt+1 + Pt+1

Pt
−Rf

]
+ U ′′

(
wi0
)
wi0Ei

[(
Rf − 1 + θit

(
Xt+1 + Pt+1

Pt
−Rf

))(
Xt+1 + Pt+1

Pt
−Rf

)]
≈ 0.

Second, we impose that terms that involve the product of two or more net interest rates are negligible.
In continuous time, these terms would be of order (dt)2. Formally, it follows that

(
Rf − 1

)
Eit
[
Xt+1 + Pt+1

Pt
−Rf

]
≈ 0 and

(
Eit
[
Xt+1 + Pt+1

Pt
−Rf

])2
≈ 0,

which allows us to express Equation (27) as

U ′
(
wi0
)
Eit
[
Xt+1 + Pt+1

Pt
−Rf

]
+ U ′′

(
wi0
)
wi0θ

i
tVarit

[
Xt+1 + Pt+1

Pt

]
≈ 0.
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Therefore, we can express an investor’s risky portfolio share θit as

θit ≈
1
γi

Eit
[
Xt+1+Pt+1

Pt
−Rf

]
Varit

[
Xt+1+Pt+1

Pt

] , (28)

where γi ≡ −w
i
0U
′′
i (wi0)

U ′
i(wi0)

denotes the coefficient of relative risk aversion. These coefficients are time
invariant since we have assumed that the distribution of investor types is time invariant and the wealth
distribution across time and investor type is i.i.d.

Third, as in Campbell and Shiller (1988), we take a log-linear approximation of returns around a
predetermined dividend-price ratio. Formally, note that

ln
(
Xt+1 + Pt+1

Pt

)
= ln

(
1 + ept+1−xt+1

)
+ ∆xt+1 − (pt − xt) ,

where yt = lnYt for any given variable Yt. Following Campbell and Shiller (1988), we approximate the
first term around a point PX = ep−x, to find that

ln
(
1 + ept+1−xt+1

)
≈ ln (1 + PX) + PX

PX + 1 (pt+1 − xt+1 − (p− x)) .

= k0 + k1 (pt+1 − xt+1) ,

where k1 ≡ PX
PX+1 and k0 ≡ ln (1 + PX)− k1 (p− x).

Therefore, starting from Equation (28), we can express an investor’s risky portfolio share θit as

θit ≈
1
γi
k0 + k1Eit [pt+1 − xt+1] + Eit [∆xt+1]− (pt − xt)− rf

Var [k1 (pt+1 − xt+1) + ∆xt+1] ,

where we define rf ≡ lnRf and we used that ey ≈ 1 + y.

Forming expectations In order to characterize the equilibrium it is necessary to characterize
investors’ expectations. We conjecture and subsequently verify that k1Eit [pt+1 − xt+1] + Eit [∆xt+1] is
linear in sit, nit, and xt and that Var [k1 (pt+1 − xt+1) + ∆xt+1] is a constant. Under this conjecture, θit
is a linear function of sit, xt, and nit, given by

θit ≈ αixxt + αiss
i
t + αinn

i
t − αippt + ψi.

These coefficients are time invariant since we have assumed that the distribution of investor types is time
invariant and the wealth distribution across time and investor type is i.i.d.

This expression and the market clearing condition
∫
θitw

i
0di = Q imply that

pt = αx
αp
xt + αs

αp
ut + αn

αp
nt + ψ

αp
,

where αh ≡
∫
αihw

i
0di for h = {x, s, n, p} and ψ ≡

∫
ψiwi0di−Q. As in Vives (2008), we make use of the

Strong Law of Large Numbers, since the sequence of independent random variables
{
αisw

i
0ε
i
st, α

i
nw

i
0ε
i
nt

}
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has uniformly bounded variance and mean zero. This expression can also be written as

pt =
(
αx
αp
− αs
αp

)
xt + αs

αp
xt+1 + αn

αp
nt + ψ

αp
− αs
αp
µ∆x. (29)

Investors in the model learn from the price. The information contained in the price for an investor in the
model is

π̂t = αp
αs

(
pt −

(
αx
αp
xt + αn

αp
µ∆n + ψ

αp

))
,

which has a precision τπ̂ ≡ Var
[
π̂t|ut, {xs}s≤t , pt−1

]−1
=
(
αs
αn

)2
τ∆n. Note that we denote by πt the

unbiased signal of ut contained in the change in log prices ∆pt and by π̂t the unbiased signal about ut
contained in the log price pt.

Given the information set of the investor, Var
[
nt|ut, {xs}s≤t , pt−1

]
= Var

[
∆nt|ut, {xs}s≤t , pt−1

]
.

Then,

Eit [ut] = E
[
ut|Iit

]
= τss

i
t + τun

i
t + τπ̂π̂t

τs + τu + τπ̂
=
τss

i
t + τun

i
t + τπ̂

αp
αs

(
pt − αx

αp
xt − αn

αs
µ∆n − ψ

αp

)
τs + τu + τπ̂

and Var
[
ut| Iit

]
= (τs + τu + τπ̂)−1, where Iit =

{
sit, n

i
t, {ps}s≤t , {xs}s≤t

}
. Note that these two

expressions imply that our conjecture about θit is satisfied. To see this, note that

k1Eit [pt+1 − xt+1] + Eit [∆xt+1] = k1Eit
[
αx
αp
xt+1 + αs

αp
ut+1 + αn

αp
nt+1 + ψ

αp
− xt+1

]
+ µ∆x + Eit [ut]

= k1

((
αx
αp
− 1 + 1

k1

)(
µ∆x + Eit [ut]

)
+ αn
αp

Eit [nt] +
(
αx
αp
− 1
)
xt + αn

αp
µ∆n + ψ

αp

)
,

where we used that Eit [ut+1] = 0, that Eit
[
ε∆n
t+1
]

= 0, and that Eit [nt] is linear in pt and xt. To see this,
first note that nt−1 is known at time t since the information set of the investor includes all past prices
and payoffs. Therefore, the prior mean of investor i about nt is µ∆n+nt−1. Second, the price pt contains
information about nt. The unbiased signal about nt contained in the price pt is given by

πnt ≡
αp
αn

(
pt −

(
αx
αp
xt + ψ

αp

))
= nt + αs

αn
ut,

and its precision is given by τπn ≡
(
αn
αs

)2
τu. Then,

Eit [nt] =
τ∆n (µ∆n + nt−1) + τπn

αp
αn

(
pt −

(
αx
αp
xt + ψ

αp

))
τ∆n + τπn

and Varit [nt] = (τ∆n + τπn)−1. Moreover,

Varit [k1 (pt+1 − xt+1) + ∆xt+1] = k2
1

(
αx
αp
− 1 + 1

k1

)2
(τs + τu + τπ̂)−1 +k2

1

(
αs
αp

)2
τ−1
u +k2

1

(
αn
αp

)2
τ−1
∆n.
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Using these expressions in the first-order condition and matching coefficients gives

αix = 1
κi
k1

((
αx
αp
− 1 + 1

k1

)(
1−

τπ̂
αx
αs

τs + τu + τπ̂

)
−

τπn
αx
αp

τ∆n + τπn

)
(30)

αis = 1
κi
k1

(
αx
αp
− 1 + 1

k1

)
τs

τs + τu + τπ̂
(31)

αin = 1
κi
k1

(
αx
αp
− 1 + 1

k1

)
τu

τs + τu + τπ̂
(32)

αip = 1
κi

(
1− k1

((
αx
αp
− 1 + 1

k1

)
τπ̂

αp
αs

τs + τu + τπ̂
− τπn

τ∆n + τπn

))
(33)

ψi = 1
κi

 k0 + k1

(
−
(
αx
αp
− 1 + 1

k1

)(
τπ

αp

αs

τs+τu+τπ̂ − µ∆x

)
+ 1
)(

αn
αp
µ∆n + ψ

αp

)
+k1

αn
αp

τ∆n(µ∆n+nt−1)+τπn
αp

αn

ψ

αp

τ∆n+τπn − rf

 , (34)

where κi ≡ γiVarit [k1 (pt+1 − xt+1) + ∆xt+1].

Proof of Lemma 1 Iterating forward Equation (29) and taking differences, we find that

∆pt =
(
αx
αp
− αs
αp

)
∆xt + αs

αp
∆xt+1 + αn

αp
∆nt.

This maps to the price process in the general framework by setting φ = 0, φ0 = αx
αp
− αs

αp
, φ1 = αs

αp
, and

φn = αn
αp

.

Proof of Lemma 2 When investors are identical, the noise in their signal does not disappear from
the price, and the price in (29) becomes

pt =
(
αx
αp
− αs
αp

)
xt + αs

αp
(xt+1 + εst) + αn

αp
nt + ψ −Q

αp
− αs
αp
µ∆x,

where the demand coefficients are given by the system in Equations (30) through (34). Iterating backwards
this price and taking differences we have

∆pt =
(
αx
αp
− αs
αp

)
∆xt + αs

αp
∆xt+1 + αn

αp

(
∆nt + αs

αn
∆εst

)
.

Setting φ = 0, φ0 = αx
αp
− αs
αp

, φ1 = αs
αp

, and φn = αn
αp

and where ∆n̂t ≡ ∆nt+ αs
αn

∆εst maps to the process
in the general framework.

Time-varying risk-aversion interpretation Note that from Equations (30) through (34) one
can see that αht

αpt
= αht−1

αpt−1
= αh

αp
for all t and h = x, s, n, and that

ψt −Q
αpt

− ψt−1 −Q
αpt−1

= ∆γt
Var [k1 (pt+1 − xt+1) + ∆xt+1](
1− k1

(
αx
αp
− 1 + 1

k1

)
τπ̂

αp

αs

τs+τu+τπ̂

)Q = ∆γt
γtαpt

Q.
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In this case, the price process is

∆pt =
(
αx
αp
− αs
αp

)
∆xt + αs

αp
∆xt+1 + αn

αp

(
∆nt + αs

αn
∆εst + ∆γt

γtαnt
Q

)
,

and setting φ = 0, φ0 = αx
αp
− αs

αp
, φ1 = αs

αp
, and φn = αn

αp
, where ∆n̂t ≡ ∆nt + αs

αn
∆εst + ∆γt

γtαnt
Q, maps

to the process in the general framework. In this case, the noise in the price can come from time-varying
risk aversion.

Proof of Lemma 3 The case in which there are informed and uninformed investors and noise traders
is a special case of the model in Section 3.1 with three types of agents. In that case, the demand for
informed and uninformed investors is respectively given by

θIt ≈ αIxxt + αIsut − αIppt + ψI

θUt ≈ αUx xt + αUnn
U
t − αUp pt + ψU ,

and the demand of noise traders is given by δ. Market clearing and the SLLN imply that the equilibrium
price in Equation (17).

Taking first differences for this price process we have

∆pt ≈ φ+ φ0∆xt + φ1∆xt+1 + φn∆ñt,

where the coefficients φ = 0, φ0 = αx
αp
− αs

αp
, φ1 = αs

αp
, and φn = αn

αp
are equilibrium outcomes and

∆ñt ≡ ∆nt + 1
αn

∆δt, which proves our claim.

B Detailed Data Description
This section describes in more detail the data used for the empirical implementation of the results in
Section 4. See https://github.com/edavila/identifying_price_informativeness for additional details and
replicating files.

We obtain stock market price data from the Center for Research in Security Prices (CRSP) for the
time period between January 1, 1950 and December 31, 2019. First, we import monthly price data
from the Monthly Stock File (msf) for ordinary common shares (shrcd = 10 or 11). Second, we import
delisting prices and other delisting information from the monthly delisting file (msedelist). Third, we
import market returns from the monthly stock indicators file (msi). Lastly, we import the start and/or
end date(s) of when a stock has been part of the S&P 500 from dsp500list. We restrict our sample
to securities listed on the NYSE, AMEX or the NASDAQ (exchcd = 1, 2, or 3). We compute market
capitalization by multiplying the stock price by the number of shares outstanding. For companies with
multiple securities, we sum the market cap for all the company’s securities and keep only the permno with
the highest market capitalization. We define turnover as the ratio between trading volume and shares
outstanding.

From FRED, we obtain monthly time series for Personal Consumption Expenditure (PCEPI), 1-
Year and 10-Year Treasury Rates (GS1, GS10), Unemployment Rate (UNRATE), Personal Consumption
Expenditures (PCE), and Personal Income (PI).

We import firm performance data from both the COMPUSTAT Fundamentals Annual Data &
the Fundamentals Quarterly Data in the standard, consolidated, industrial format for domestic firms
(INDFMT = ’INDL’ and DATAFMT = ’STD’ and CONSOL = ’C’ and POPSRC = ’D’) for observations
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between January 1, 1950 and December 31, 2019 . For future linking with CRSP, we also import GVKEYs
and permnos from the CRSP/COMPUSTAT Merged (CCM) database, keeping the following linktypes:
“LU,” “LC,” or “LS,” and for which the issue marker is primary (linkprim = “P” or “C”). For both the
annual and quarterly data, we only keep observations where the observation date is between the beginning
and end of the period for which the CCM link is valid.

We form book value (book) for annual[quarterly] data as shareholders equity (seq[q]) + deferred
assets plus investment tax credit (txditc[q]) - pstk[q] (preferred stock). To deal with missing values, we
replace seqq with common equity plus preferred equity (ceq[q] + pstk[q]) if an observation of the former
but not the latter is unavailable, and if both of are unavailable, we replace with total assets minus total
liability (at[q] - lt[q]). If an observation for txditc[q] and/or pstk[q] are missing, we replace it with 0.
We respectively use oiadpq and ebit as our payoff measures in the quarterly and annual datasets. We
merge for both the annual and quarterly datasets, where in the shifted specifications, we shift CRSP
respectively one quarter and one month back. After merging the COMPUSTAT and CRSP datasets
using the timing describing in the text, we use PCEPI to deflate all nominal variables. We also discard
stocks with non-finite prices and whose payoff is always 0 or NA. We winsorize payoff and price values at
the 2.5th and 97.5th percentile to reduce the impact of outliers. We compute changes in payoffs as the
log of one plus the year-on-year change in earnings divided by book equity.

We define our public signals as follows. The profitability ratio is the total operating profits of the
trailing four quarter period divided by book equity lagged four quarters. The divided ratio is the total
dividends of the trailing four quarter period divided by book equity lagged four quarters. Asset growth
is the log growth of assets over the previous four quarters. Market beta is the coefficient of the stock’s
excess monthly returns against the S&P500’s excess monthly returns over a rolling 5 year backward
looking window containing at least 24 months of observations.

For analyst forecasts, we use all available, non-excluded 4-quarter ahead EPS forecasts from IBES.
From this we construct forecasted earnings growth by subtracting the realized value of EPS for 4 quarters
before the fiscal quarter the analyst is forecasting (i.e., if the analyst is forecasting quarter t, then the
realized value comes from t − 4). We then apply the same transformation as with realized earnings by
normalizing by book equity, adding 1, and taking the logarithm. Similarly, forecasted future earnings
growth uses the realized value from quarter t and forecasts for t+ 4.

Figure IA-1 illustrates the distribution of stock-specific standard deviation of quarterly earnings’
growth rates in our sample of stocks with more than 40 observations. As one would expect, the volatility
of earnings across stocks varies widely in the cross section.
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Figure IA-1: Cross-sectional standard deviation of earnings’ growth rates

Note: Figure IA-1 shows a relative-frequency histogram of the distribution across stocks of the time-series
standard deviation of earnings growth rates. This histogram features 6,803 stocks. For reference, the median and
mean of the average growth rate of earnings across the stocks represented in this figure are, respectively, 0.11 and
0.56.

C Empirical Implementation: Additional Results
In this section, we report additional empirical results. First, we include a series of figures that give more
insight into the cross-sectional results presented in Table 2. Second, we present additional cross-sectional
results under the assumption that there is an unlearnable component of earnings. Finally, we present the
cross-sectional correlation between price informativeness measured in year t and price informativeness
measured in prior years.

C.1 Cross-sectional Relation: Graphical Illustration
Figures IA-2 through IA-6 are the counterparts of the cross-sectional results presented in Table 2. Each
figure shows scatter plots of cross-sectional regressions of relative price informativeness (in twentiles) on
each of the five variables considered: size, value, turnover, return volatility, and institutional ownership,
for each of the years between 1981 and 2016. These figures make clear that the positive relationships
between price informativeness and size, turnover, and institutional ownership are robust across time.
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Figure IA-2: Price informativeness and size
Note: Figure IA-2 shows year-by-year cross-sectional regressions of relative price informativeness (in twentiles)
on size, defined as the log of market capitalization — see e.g. Bali, Engle and Murray (2016). The estimate
reported in Table 2 can be interpreted as a weighted averaged of the year-by-year slope coefficient illustrated
here.
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Figure IA-3: Price informativeness and value
Note: Figure IA-3 shows year-by-year cross-sectional regressions of relative price informativeness (in twentiles)
on value, defined as the ratio between a stock’s book value and its market capitalization. The estimate reported
in Table 2 can be interpreted as a weighted averaged of the year-by-year slope coefficient illustrated here.

IA-9



2015 2016

2009 2010 2011 2012 2013 2014

2003 2004 2005 2006 2007 2008

1997 1998 1999 2000 2001 2002

1991 1992 1993 1994 1995 1996

1985 1986 1987 1988 1989 1990

0.00 20.00 40.00 60.00 0.00 20.00 40.00 60.00

0.00 25.00 50.00 75.00 0.00 20.00 40.00 60.00 80.00 0.00 20.00 40.00 60.00 0.00 20.00 40.00 60.00 0.00 20.00 40.00 60.00 0.00 20.00 40.00 60.00

0.00 20.00 40.00 60.00 0.00 25.00 50.00 75.00100.00 0.00 20.00 40.00 60.00 80.00 0.00 20.00 40.00 60.00 0.00 20.00 40.00 60.00 0.00 25.00 50.00 75.00

0.00 10.0020.0030.0040.00 0.00 10.00 20.00 30.00 0.00 20.00 40.00 60.00 0.0010.0020.0030.0040.0050.00 0.00 10.0020.0030.0040.00 0.0010.0020.0030.0040.0050.00

0.00 5.00 10.00 15.00 0.00 5.00 10.00 15.00 0.00 5.00 10.0015.0020.00 0.00 10.00 20.00 0.00 10.00 20.00 30.00 40.00 0.00 10.00 20.00 30.00 40.00

0.00 5.00 10.00 15.00 20.00 0.00 5.00 10.00 15.00 20.00 0.00 5.00 10.0015.0020.00 0.00 5.00 10.00 15.00 20.00 0.00 5.00 10.00 15.00 20.00 0.00 5.00 10.00 15.000.00

0.04

0.08

0.12

0.16

0.20

0.00

0.04

0.08

0.12

0.16

0.20

0.00

0.04

0.08

0.12

0.16

0.20

0.00

0.04

0.08

0.12

0.16

0.20

0.00

0.04

0.08

0.12

0.16

0.20

0.00

0.04

0.08

0.12

0.16

0.20

0.00

0.04

0.08

0.12

0.16

0.20

0.00

0.04

0.08

0.12

0.16

0.20

0.00

0.04

0.08

0.12

0.16

0.20

0.00

0.04

0.08

0.12

0.16

0.20

0.00

0.04

0.08

0.12

0.16

0.20

0.00

0.04

0.08

0.12

0.16

0.20

0.00

0.04

0.08

0.12

0.16

0.20

0.00

0.04

0.08

0.12

0.16

0.20

0.00

0.04

0.08

0.12

0.16

0.20

0.00

0.04

0.08

0.12

0.16

0.20

0.00

0.04

0.08

0.12

0.16

0.20

0.00

0.04

0.08

0.12

0.16

0.20

0.00

0.04

0.08

0.12

0.16

0.20

0.00

0.04

0.08

0.12

0.16

0.20

0.00

0.04

0.08

0.12

0.16

0.20

0.00

0.04

0.08

0.12

0.16

0.20

0.00

0.04

0.08

0.12

0.16

0.20

0.00

0.04

0.08

0.12

0.16

0.20

0.00

0.04

0.08

0.12

0.16

0.20

0.00

0.04

0.08

0.12

0.16

0.20

0.00

0.04

0.08

0.12

0.16

0.20

0.00

0.04

0.08

0.12

0.16

0.20

0.00

0.04

0.08

0.12

0.16

0.20

0.00

0.04

0.08

0.12

0.16

0.20

0.00

0.04

0.08

0.12

0.16

0.20

0.00

0.04

0.08

0.12

0.16

0.20

Turnover

R
el

at
iv

e 
P

ric
e 

In
fo

rm
at

iv
en

es
s

Figure IA-4: Price informativeness and turnover
Note: Figure IA-4 shows year-by-year cross-sectional regressions of relative price informativeness (in twentiles)
on turnover, defined as the ratio between trading volume and shares outstanding. The estimate reported in Table
2 can be interpreted as a weighted averaged of the year-by-year slope coefficient illustrated here.
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Figure IA-5: Price informativeness and idiosyncratic return volatility
Note: Figure IA-5 shows year-by-year cross-sectional regressions of relative price informativeness (in twentiles)
on idiosyncratic volatility, define as the standard deviation over a 30 month period of the difference between the
returns of a stock and the market return. The estimate reported in Table 2 can be interpreted as a weighted
averaged of the year-by-year slope coefficient illustrated here.
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Figure IA-6: Price informativeness and institutional ownership
Note: Figure IA-6 shows year-by-year cross-sectional regressions of relative price informativeness (in twentiles)
on institutional ownership, defined as the proportion of a stock held by institutional investors. The estimate
reported in Table 2 can be interpreted as a weighted averaged of the year-by-year slope coefficient illustrated
here.
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C.2 Unlearnable Payoff Component
In this section, we provide additional results following the identification results in Proposition 10, which
considers a payoff process with an unlearnable component.
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Figure IA-7: Cross-sectional results (2) - unlearnable component of earnings

Note: The left panel in Figure IA-7 shows a box plot by exchange of the residuals of a regression of relative price
informativeness on year fixed effects. The left panel in Figure IA-7 shows a box plot by S&P 500 status of the
residuals of a regression of relative price informativeness on year fixed effects. The solid middle line represents
the median. The top and bottom of the box represent the 75th and 25th percentiles. The whiskers extend up to
1.5 times the interquartile range.
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Table IA-1: Price informativeness summary statistics - unlearnable component of earnings

t Median Mean SD Skew Kurt P5 P25 P75 P95 n

1994 0.0198 0.0217 0.0203 0.2522 -1.3266 0.0019 0.0091 0.0324 0.0441 4
1995 0.0130 0.0343 0.0547 1.8893 1.8290 0.0023 0.0074 0.0277 0.1183 7
1996 0.0094 0.0296 0.0428 1.2605 0.0637 0.0014 0.0019 0.0386 0.0938 6
1997 0.0724 0.0891 0.0905 0.9956 0.6098 0.0011 0.0062 0.1461 0.2119 18
1998 0.0308 0.0543 0.0632 1.2803 0.6297 0.0006 0.0068 0.0844 0.1648 17
1999 0.0652 0.0836 0.0867 0.8544 -0.4005 0.0010 0.0066 0.1171 0.2343 22
2000 0.0387 0.0839 0.0932 1.1043 0.2803 0.0021 0.0098 0.1389 0.2306 21
2001 0.0461 0.0762 0.0823 1.6577 2.2211 0.0022 0.0222 0.0974 0.2660 26
2002 0.0447 0.0690 0.0732 1.9219 4.5972 0.0047 0.0187 0.0901 0.1747 37
2003 0.0299 0.0601 0.0763 1.9483 4.0100 0.0025 0.0075 0.0922 0.1947 46
2004 0.0202 0.0635 0.0842 1.7434 2.4242 0.0009 0.0059 0.0943 0.2599 52
2005 0.0512 0.0857 0.0967 1.6455 2.6865 0.0024 0.0128 0.1226 0.2680 62
2006 0.0629 0.0989 0.1067 1.4966 1.9529 0.0008 0.0162 0.1423 0.3101 75
2007 0.0580 0.1070 0.1226 1.5701 2.4518 0.0023 0.0155 0.1521 0.3621 85
2008 0.0559 0.1048 0.1295 1.8777 3.3902 0.0039 0.0185 0.1338 0.3920 110
2009 0.0432 0.0940 0.1205 1.9953 4.3382 0.0016 0.0123 0.1198 0.3411 136
2010 0.0390 0.0940 0.1149 1.6629 2.4799 0.0012 0.0122 0.1527 0.3258 170
2011 0.0514 0.0992 0.1136 1.5659 2.2905 0.0013 0.0156 0.1529 0.3246 219
2012 0.0545 0.0995 0.1171 1.8642 4.0107 0.0011 0.0181 0.1434 0.3167 259
2013 0.0518 0.0983 0.1178 1.9602 4.6162 0.0010 0.0154 0.1372 0.3077 309
2014 0.0406 0.0879 0.1140 2.1623 5.0558 0.0010 0.0132 0.1168 0.3310 349
2015 0.0454 0.0903 0.1087 1.8839 3.8100 0.0014 0.0137 0.1307 0.3229 403
2016 0.0548 0.0949 0.1062 1.5788 2.5071 0.0014 0.0136 0.1521 0.3183 444
2017 0.0534 0.0942 0.1058 1.6646 2.8589 0.0017 0.0165 0.1359 0.3282 482

Note: Table IA-1 reports year-by-year summary statistics on the panel of price informativeness measures
recovered under the assumption of an unlearnable component of earnings. It provides information on the median;
mean; standard deviation; skewness; excess kurtosis; and 5th, 25th, 75th, and 95th percentiles of each yearly
distribution, as well as the number of stocks in each year. Since our panel of price informativeness is quarterly,
we average the measures of quarterly price informativeness at the yearly level before computing the summary
statistics. Informativeness in year t is computed over a rolling window of 40 quarters prior.
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Figure IA-8: Cross-sectional results (3) - unlearnable component of earnings

Note: Figure IA-8 shows a box plot by one-digit SIC industry code of the residuals of a regression of relative
price informativeness on year fixed effects. The solid middle line represents the median. The top and bottom of
the box represent the 75th and 25th percentiles. The whiskers extend up to 1.5 times the interquartile range.

C.3 Persistence of Price Informativeness Estimates
Table IA-2 reports the cross-sectional correlation between price informativeness measured in year t and
price informativeness measured in prior years, following the methodology of chapter 4 of Bali, Engle and
Murray (2016). This table shows that our informativeness measures are persistent over time, especially
in recent years. As one might expect, the strength of the correlation decays over time, with one-year
cross correlations consistently above 0.7, while five-year cross-correlations can be as low as 0.2.
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Table IA-2: Persistence of price informativeness

t ρt,t−1(τRπ ) ρt,t−2(τRπ ) ρt,t−3(τRπ ) ρt,t−4(τRπ ) ρt,t−5(τRπ )

1985 0.9407 0.9131 0.8807 0.7778 0.1711
1986 0.9117 0.7853 0.7942 0.8509 0.7809
1987 0.9160 0.7708 0.6230 0.6617 0.8335
1988 0.9060 0.7640 0.6627 0.5003 0.5155
1989 0.9128 0.7678 0.6233 0.5312 0.3969
1990 0.8922 0.7783 0.6381 0.5036 0.4044
1991 0.8871 0.7280 0.6374 0.4996 0.3721
1992 0.8750 0.7198 0.5976 0.5173 0.3799
1993 0.8172 0.6571 0.5138 0.4499 0.3846
1994 0.8857 0.6002 0.5085 0.3963 0.3294
1995 0.8901 0.7335 0.4908 0.4348 0.3563
1996 0.8641 0.7171 0.6054 0.3728 0.3151
1997 0.8646 0.6883 0.5868 0.4821 0.2138
1998 0.8423 0.6439 0.5253 0.4618 0.3766
1999 0.8461 0.6378 0.4923 0.3912 0.3709
2000 0.8293 0.6222 0.4690 0.3651 0.2760
2001 0.8681 0.6556 0.5171 0.4203 0.3254
2002 0.8876 0.7256 0.5468 0.4535 0.3801
2003 0.8929 0.7440 0.6160 0.4805 0.3949
2004 0.9109 0.7681 0.6328 0.5130 0.3923
2005 0.9233 0.7915 0.6752 0.5503 0.4397
2006 0.9259 0.8264 0.7038 0.6116 0.5044
2007 0.9043 0.8017 0.7212 0.6083 0.5449
2008 0.8497 0.7168 0.6481 0.5759 0.4787
2009 0.8742 0.6493 0.5318 0.4812 0.4165
2010 0.8617 0.6742 0.4946 0.4140 0.3746
2011 0.8959 0.7100 0.5310 0.4037 0.3566
2012 0.9027 0.7524 0.6045 0.4432 0.3151
2013 0.8850 0.7467 0.6306 0.5163 0.3803
2014 0.8990 0.7409 0.6380 0.5257 0.4282
2015 0.9068 0.7916 0.6460 0.5551 0.4596
2016 0.9241 0.7855 0.6865 0.5787 0.5082

Note: Table IA-2 reports the cross-sectional correlation between price informativeness measured in year t and
price informativeness measures in year t − k, where k = {1, 2, 3, 4, 5}. Since our panel of price informativeness
is quarterly, we average the measures of quarterly price informativeness at the yearly level before computing the
correlations. We start reporting the correlations in 1980, since that is the first year with more than 250 stocks.
Informativeness in year t is computed over a rolling window of 40 quarters prior.

C.4 Correlation of Price Informativeness Estimates
Table IA-3 reports the correlation matrix among the different estimates of price informativeness. This
table shows that there is a robust correlation between informativeness estimates with a without controls.
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The relation between the baseline and those using average analyst forecast as a proxy for the learnable
component of the payoff, as in Section 4.2, is also positive but less strong.

Table IA-3: Correlation of price informativeness estimates

Baseline Unlearnable No Controls Unlearnable No Controls
Baseline 1 − − −

Unlearnable 0.234 1 − −
No Controls 0.838 0.225 1 −

Unlearnable No Controls 0.163 0.839 0.210 1

Note: Table IA-3 reports the correlation among the different estimated measures of informativeness.
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D Empirical Implementation: Price as only signal
While in the body of the paper we report measures of price informativeness that include additional
controls — public signals, in the language of Section 2 — in this section we report the results without
controls, from the perspective of an external observer who only sees the price and past payoffs. Formally,
the results reported here are the outcome of running the following two regressions

∆pjt = β
j + βj0∆xjt + βj1∆xjt+4 + εjt ⇒ R2,j

∆x,∆x′

∆pjt = ζ
j + ζj0∆xjt + ε̂jt ⇒ R2,j

∆x .

Figure IA-9, which is the counterpart of Figure 2, shows a relative-frequency histogram of price
informativeness for a representative time period, the last quarter of 2015. Figure IA-10, which is the
counterpart of Figure 5, shows the time-series evolution of the cross-sectional mean, median, and standard
deviation of relative price informativeness. Table IA-4 and Figures IA-11 and IA-12, which are the
counterparts of Table 2 and Figures 3 and 4, show the cross-sectional properties of the distribution of
price informativeness across stocks.
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Figure IA-9: Price informativeness: relative-frequency histogram, no public signals
Note: Figure IA-9 shows a relative-frequency histogram of price informativeness for a representative time period,
the last quarter of 2015. Note that informativeness is computed over a rolling window of 40 quarters prior.
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Table IA-4: Cross-sectional results, no public signals

Estimate Std. Error t-stat

Size 0.002270 0.000186 12.19
Value 0.000083 0.000519 0.16
Turnover 0.000454 0.000029 15.75
Idiosyncratic Volatility 0.040384 0.008264 4.89
Institutional Ownership 0.024064 0.001449 16.61

Analysts Covering 0.001251 0.000084 14.95

Note: Table IA-4 reports the estimates (âc1) of panel regressions of price informativeness on cross-sectional
characteristics (in twentiles) with year fixed effects (ξt): τR,bπ,t = ac0 + ac1c

b
t + ξt + εb,t, where τR,b,tπ denotes the

average price informative per bin (twentile) in a given period, cbt denotes the value of the given characteristic
per bin (twentile) in a given period, ξt denotes a year fixed effect, ac0 and ac1 are parameters, and εb,t is an error
term. Figures IA-2 through IA-6 provide the graphical counterpart of the results in this table. Size is measured
as the natural log of stock market capitalization, value is measured as the ratio between a stock’s book value
and its market capitalization, turnover is measured as the ratio between trading volume and shares outstanding,
idiosyncratic volatility is measured as the standard deviation — over a 30 month period — of the difference
between the returns of a stock and the market return, and institutional ownership is measured as the proportion
of a stock held by institutional investors.
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Figure IA-11: Cross-sectional results, no public signals

Note: The left panel in Figure IA-11 shows a box plot by exchange of the residuals of a regression of relative
price informativeness on year fixed effects. The left panel in Figure IA-11 shows a box plot by S&P 500 status of
the residuals of a regression of relative price informativeness on year fixed effects. The solid middle line represents
the median. The top and bottom of the box represent the 75th and 25th percentiles. The whiskers extend up to
1.5 times the interquartile range.

IA-19







0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

1985 1990 1995 2000 2005 2010 2015
Year

R
el

at
iv

e 
P

ric
e 

In
fo

rm
at

iv
en

es
s

Mean and Median

Standard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard DeviationStandard Deviation

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

0.16

1985 1990 1995 2000 2005 2010 2015
Year

R
el

at
iv

e 
P

ric
e 

In
fo

rm
at

iv
en

es
s

Standard Deviation

Figure IA-10: Price informativeness over time, no public signals

Note: The left panel in Figure IA-10 shows the time-series evolution of the cross-sectional mean and median
relative price informativeness. The right panel in Figure IA-10 shows the time-series evolution of the cross-sectional
standard deviation of price informativeness. The red dashed lines show linear trends starting in 1986.

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Agr
ic.

/M
in

in
g/

Con
st

r.
M

an
uf

ac
tu

rin
g

Tr
an

sp
or

ta
tio

n
W

ho
le

sa
le

/R
et

ai
l

Fi
na

nc
e/

In
su

ra
nc

e

Ser
vic

es

P
ric

e 
In

fo
rm

at
iv

en
es

s 
(r

es
id

ua
l) Sector

Figure IA-12: Cross-sectional results, no public signals

Note: Figure IA-12 shows a box plot by one-digit SIC industry code of the residuals of a regression of relative
price informativeness on year fixed effects. The solid middle line represents the median. The top and bottom of
the box represent the 75th and 25th percentiles. The whiskers extend up to 1.5 times the interquartile range.
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E Additional Results

E.1 Absolute Price Informativeness
For simplicity, we provide our results in the absence of public signals and when investors have information
about the payoff one period ahead.

Proposition 4. (Identifying absolute price informativeness) Let β, β0, and β1 denote the
coefficients of the following regression of log-price differences on realized and future log-payoff differences,
then

∆pt = β + β0∆xt + β1∆xt+1 + et, (R1)

where ∆pt = pt−pt−1 denotes the date t change in log-price, and ∆xt = xt−xt−1 and ∆xt+1 = xt+1−xt
respectively denote the date t and t+ 1 log-payoff differences.

Proof. By comparing Regression R1 with the structural Equation (2), it follows that β = φ + φnµ∆n,
β0 = φ0, β1 = φ1, and et = φnε

∆n
t . Consequently, σ2

e = Var [et] = (φn)2 Var
[
ε∆n
t

]
= (φn)2

τ−1
∆n.

Therefore, we can recover absolute price informativeness as follows

τπ = (β1)2

σ2
e

= (φ1)2

(φn)2
τ−1
∆n

=
(
φ1

φn

)2
τ∆n.

Given the assumptions on ut and ∆nt, it is straightforward to show that the OLS estimates of Regressions
R1 and R2 are consistent, which implies that price informativeness can be consistently estimated as

τ̂π =
(
β̂1
)2

σ̂2
e

. Formally, plim (τ̂π) = plim
((

β̂1
)2

σ̂2
e

)
=
(
φ1
φn

)2
τ∆n = τπ.
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F Structural Interpretation of Empirical Findings
It is possible to interpret the empirical findings presented in Section 4 through the lens of the general
framework developed in Section 2 and the structural models developed in Section 3. If one were merely
interested in knowing the precision of the signal contained in asset prices about future payoffs, our
empirical results directly conclude that such signal is more precise for large, high turnover, and high
institutional ownership stocks, and has become more precise on average over the last few decades.

However, one may be interested in translating these empirical patterns of informativeness to particular
elements of a model. For simplicity, we consider the case without public signals and when investors have
information about the payoff one period ahead. In this case, we can express relative price informativeness
as

τRπ = 1

1 +
(
φn
φ1

)2
τu
τ∆n

. (35)

From Equation (35), we can conclude that stocks with high informativeness are those with a high value
of φ1 (sensitivity of the asset price to the future payoff) relative to φn (sensitivity of the asset price to
its non-payoff relevant component) and/or a high value of τ−1

u (variance of the innovation to the payoff)
relative to τ−1

∆n (variance of the non-payoff relevant component, i.e., noise). Therefore, our empirical
results imply that the (either of the) ratios φ1

φn
and τ−1

∆n
τ−1
u

must be higher for large, high turnover, and high
institutional ownership stocks, and that (either of) such ratios must have increased on average over the
last few decades. Equation (35) clearly highlights that price informativeness captures the signal-to-noise
ratio in asset prices, but not the sources of noise or information independently.

The models developed in Section 3 allow us to go one step further by relating our empirical findings on
informativeness to deeper primitives. In all three models, the ratio φ1

φn
corresponds to αs

αn
, which denotes

the ratio of the aggregate demand sensitivities to information and noise, respectively. Consequently,
across all three models, higher price informativeness can be interpreted as either a higher αs

αn
and/or a

higher τ∆n
τu

. While τu is a primitive in all three models, αs, αn, and, in some cases, τ∆n, are equilibrium
objects, as we explain below.

The first model considered in Section 3, in which noise arises from investors’ sentiment, provides the
clearest connection between relative price informativeness and model primitives in the context of a fully
structural model. In this model, the aggregate demand sensitivity to information relative to noise is
exactly given by the ratio of the precision of investors’ private signals (τs) about the future payoff relative
to the precision of the innovation (τu), that is, αs

αn
= τs

τu
. In this model, the noise embedded in the price

is only coming from the investors’ sentiment and τ∆n is also a primitive of the model. Therefore, price
informativeness can be expressed as the following combination of primitives:

τRπ = 1

1 +
(
τu
τs

)2
τu
τ∆n

. (36)

Equation (36) implies that price informativeness is increasing in the precision of investors’ private signals
(τs), decreasing in the volatility of the payoff innovation (τ−1

u ), and decreasing in the volatility of
aggregate noise (τ−1

∆n). Through the lens of this model, one interpretation of our empirical results is
that investors have more precise private information about stocks with higher market capitalization
and high turnover. It is conceivable that investors acquire more private information about stocks with
higher market capitalization and high turnover because they can benefit from such information at a
larger scale. However, this conclusion is not obvious, since one may conjecture that larger firms attract
the attention of more unsophisticated traders, which would make the prices of those stocks noisy and
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uninformative, or that high turnover stocks feature a large number of noise traders, thus engendering low
price informativeness. Similarly, our time series empirical findings are consistent with an increase in the
average precision of private information relative to noise over the last few decades. Similar arguments
can be given for the other characteristics, e.g., value, institutional ownership, idiosyncratic volatility.

In the second model considered in Section 3, which features a representative agent, the relative
aggregate demand sensitivity to noise and information is also given αs

αn
= τs

τu
, but in this case the

precision of the noise embedded in the price τ∆n is endogenous, which makes the connection between
informativeness and primitives less direct. As in the model with sentiment, we show that price
informativeness is increasing in the precision of investors’ private signals (τs) and decreasing in the
volatility of the innovation (τ−1

u ). All else equal, it is also the case that price informativeness is decreasing
in the volatility of aggregate noise (τ−1

∆n). Therefore, the interpretation of the results is almost identical
to the interpretation of the model with sentiment as noise. We should note that if we had allowed
for time varying risk aversion, the movements in discount rates could be interpreted as changes in the
(endogenous) volatility of τ∆n.

Finally, the model with informed, uninformed, and noise traders delivers similar implications to the
model with sentiment. In this last model, price informativeness is increasing in the fraction of informed
investors and decreasing in the volatility of noise trading. Through the lens of this model, our empirical
results can be interpreted as concluding that large, high turnover, and high institutional ownership stocks
feature a higher share of informed investors relative to noise traders, and that the share of informed
investors has increased over the last few decades in relation to the volatility of noise trading.
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G Alternative Modeling Frameworks
Our identification results extend to any linear or log-linear setup. In this section, we illustrate how to
extend our results in the context of three different specifications. First, we extend our approximate results
to the case in which the payoff follows a stationary AR(1) process. Second, we develop our identification
results using an exact linear formulation for the price process under difference-stationary and stationary
specifications for the payoff. Third, we also provide the respective CARA-Normal models to microfound
these exact linear formulations.

G.1 Log-Linear Model in Levels

General framework and identification

We consider a discrete time environment with dates t = 0, 1, 2, . . . ,∞, in which investors trade a risky
asset in fixed supply at a (log) price pt at each date t. We assume that the (log) payoff of the risky asset
at date t+ 1, xt+1, follows a stationary AR(1) process

xt+1 = µx + ρxt + ut, (37)

where µx is a scalar, |ρ| < 1, and where the innovations to the payoff, ut, have mean zero, a finite
variance denoted by Var [ut] = σ2

u = τ−1
u , and are identically and independently distributed over time.17

We assume that the equilibrium price is given by

pt = φ+ φ0xt + φ1xt+1 + φnnt, (38)

where φ, φ0, φ1, and φn are parameters and where nt represents the aggregate component of investors’
trading motives that are orthogonal to the asset payoff, given by nt = µn + εnt , where E [εnt ] = 0 and
Var [εnt ] = σ2

n = τ−1
n . For simplicity, we assume that ut and nt are independent.

In this environment, the unbiased signal of the innovation to future payoffs ut contained in the price
level, which we denote by π̃t, is given by

π̃t ≡
pt −

(
φ+ φ1µx + φnµn + (φ0 + ρφ1)xt

)
φ1

= ut + φn
φ1

(nt − µn)

and absolute and relative price informativeness are respectively given by

τπ̃ ≡ (Var [ π̃t|xt+1, xt])−1 =
(
φ1

φn

)2
τn and τRπ̃ ≡

τπ̃
τπ̃ + τu

.

Proposition 5. (Identifying price informativeness: log-linear case)
a) Absolute price informativeness. Let β, β0, and β1 denote the coefficients of the following regression

of log-prices on realized and future log-payoffs:

pt = β + β0xt + β1xt+1 + et, (R1-LL)

where pt denotes the date t log-price, xt and xt+1 respectively denote the dates t and t+ 1 log-payoff, and
where σ2

e = Var [et] denotes the variance of the error. Then, absolute price informativeness, τπ, can be
17As in the body of the paper, we index the innovation to the date t + 1 payoff ut by t — instead of t + 1 —

because investors may be able to learn about it at date t.
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recovered by

τπ̃ = β2
1
σ2
e

.

The OLS estimation of Regression R1-LL yields consistent estimates of β1 and σ2
e .

b) Relative Price Informativeness. Let R2
x,x′ denote the R-squared of Regression R1-LL. Let R2

x, ζ,
and ζ0 respectively denote the R-squared and the coefficients of the following regression of log-price on
log-payoff,

pt = ζ + ζ0xt + eζt . (R2-LL)

Then, relative price informativeness, τRπ̃ , can be recovered by

τRπ̃ =
R2
x,x′ −R2

x

1−R2
x

.

The OLS estimation of Regressions R1-LL and R2-LL yields consistent estimates of R2
x,x′ and R2

x.

Proof. a) By comparing Regression R1-LL with the structural Equation (38), it follows that β = φ+φnµn,
β0 = φ0, β1 = φ1, and et = φnε

n
t . Consequently, σ2

e = Var [et] = (φn)2 Var [εnt ] = (φn)2
τ−1
n . Therefore,

we can recover absolute price informativeness as follows:

τπ̃ = (β1)2

σ2
e

=
(
φ1

φn

)2
τn.

Given Equations (37) and (38), as well as the assumptions on ut and nt, it is straightforward to
show that the OLS estimates of Regressions R1-LL and R2-LL are consistent, which implies that price

informativeness can be consistently estimated as τ̂π̃ =
(
β̂1
)2

σ̂2
e

. Formally, plim (τ̂π̃) = plim
((

β̂1
)2

σ̂2
e

)
=(

φ1
φn

)2
τn = τπ.

b) Note that the R-squareds of Regressions R1-LL and R2-LL can be expressed as follows

R2
x,x′ = 1− Var (et)

Var (pt)
and R2

x = Var (ζ0xt)
Var (pt)

.

After substituting Equation (37) in Regression R1-LL, the following relation holds

pt = φ+ φ1µx + φnµn + (φ0 + ρφ1)xt + φ1ut + φnε
n
t . (39)

By comparing Regression R2-LL with the structural Equation (39), it follows that ζ = φ+φ1µx +φnµn,
ζ0 = φ0 + ρφ1, and εζt = φ1ut + φnε

n
t .

From Equation (39), the following variance decomposition must hold

Var (pt) = Var (ζ0xt) + Var (φ1ut + φnε
n
t )

= Var (ζ0xt) + (φ1)2 Var (ut) + Var (et) ,
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which can be rearranged to express τπ̃
τu

as follows:

1 = Var (ζ0xt)
Var (pt)︸ ︷︷ ︸

R2
x

+ Var (et)
Var (pt)︸ ︷︷ ︸
1−R2

x,x′

 (φ1)2

Var (et)
Var (ut)︸ ︷︷ ︸

τπ̃
τu

+1

⇒ τπ̃
τu

=
R2
x,x′ −R2

x

1−R2
x,x′

.

Therefore, relative price informativeness can be written as

τRπ̃ = τπ̃
τπ̃ + τu

= 1
1 + 1

τπ̃
τu

=
R2
x,x′ −R2

x

1−R2
x

.

Microfoundation

Time is discrete, with dates denoted by t = 0, 1, 2, . . . ,∞. The economy is populated by a continuum
of investors, indexed by i ∈ I, who live for two dates. An investor born at date t has well-behaved
expected utility preferences over terminal wealth wi1, with flow utility given by Ui

(
wi1
)
, where U ′i (·) > 0

and U ′′i (·) < 0.
There are two long-term assets in the economy: a risk-free asset in perfectly elastic supply, with gross

return Rf > 1, and a risky asset in fixed supply Q, whose date t (log) payoff is xt = ln (Xt) and which
trades at a (log) price pt = ln (Pt). The process followed by xt is given by

xt+1 = µx + ρxt + ut,

where ∆xt+1 = xt+1 − xt, µx is a scalar, |ρ| < 1, and x0 = ∆x0 = 0. The realized payoff xt is common
knowledge to all investors before the price pt is determined. The realized payoff at date t + 1, xt+1, is
only revealed to investors at date t+ 1.

We assume that investors receive private signals about the innovation to the risky asset payoff.
Formally, each investor receives a signal about the payoff innovation ut given by

sit = ut + εist with εist ∼ N
(
0, τ−1

s

)
,

where εist ⊥ ε
j
st for all i 6= j, and ut ⊥ εist for all t and all i.

We also assume that investors also have private trading motives that arise from random heterogeneous
priors that are random in the aggregate. Formally, each investor i born at date t has a prior over ut given
by

ut ∼i N
(
nit, τ

−1
u

)
,

where
nit = nt + εint with εint

iid∼ N
(
0, τ−1

n

)
,

and
nt = µn + εnt with εnt ∼ N

(
0, τ−1

n

)
,

where µn is a scalar, and where εnt ⊥ εint for all t and all i. The variable nt, which can be interpreted
as the aggregate sentiment in the economy, is not observed and acts as a source of aggregate noise,
preventing the asset price from being fully revealing.
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Each investor i born at date t is endowed with wealth wi0, and optimally chooses a portfolio share in
the risky asset, denoted by θit, to solve

max
θit

Eit
[
Ui
(
wi1
)]

(40)

subject to a wealth accumulation constraint

wi1 =
(
Rf + θit

(
Xt+1 + Pt+1

Pt
−Rf

))
wi0, (41)

where the information set of an investor i in period t is given by Iit =
{
sit, n

i
t, {xs}s≤t , {ps}s≤t

}
.

The optimality condition of an investor who maximizes Equation (40) subject to the wealth
accumulation constraint in Equation (41) is given by

E
[
U ′i
(
wi1
)(Xt+1 + Pt+1

Pt
−Rf

)∣∣∣∣ Iit] = 0. (42)

We approximate an investor’s first-order condition in three steps.
First , we take a first-order Taylor expansion of an investor’s future marginal utility U ′

(
wi1
)
around

the current date t wealth level wi0. Formally, we approximate U ′
(
wi1
)
as follows

U ′
(
wi1
)
≈ U ′

(
wi0
)

+ U ′′
(
wi0
)

∆wi1,

which allows us to express Equation (42) as

U ′
(
wi0
)
Ei
[
Xt+1 + Pt+1

Pt
−Rf

]
+ U ′′

(
wi0
)
wi0Ei

[((
Rf − 1

)
+ θit

(
Xt+1 + Pt+1

Pt
−Rf

))(
Xt+1 + Pt+1

Pt
−Rf

)]
≈ 0.

Second, we impose that terms that involve the product of two or more net interest rates are negligible.
In continuous time, these terms would be of order (dt)2. Formally, it follows that

(
Rf − 1

)
Eit
[
Xt+1 + Pt+1

Pt
−Rf

]
≈ 0 and

(
Eit
[
Xt+1 + Pt+1

Pt
−Rf

])2
≈ 0,

which allows us to express Equation (42) as

U ′
(
wi0
)
Eit
[
Xt+1 + Pt+1

Pt
−Rf

]
+ U ′′

(
wi0
)
wi0θ

i
tVarit

[
Xt+1 + Pt+1

Pt

]
≈ 0.

Therefore, we can express an investor’s risky portfolio share θit as

θit ≈
1
γi

Eit
[
Xt+1+Pt+1

Pt
−Rf

]
Varit

[
Xt+1+Pt+1

Pt

] , (43)

where γi ≡ −w
iU ′′(wi)
U ′(wi) denotes the coefficient of relative risk aversion.

Third, as in Campbell and Shiller (1988), we take a log-linear approximation of returns around a
predetermined dividend-price ratio. Formally, note that

Xt+1 + Pt+1

Pt
= e

ln

((
1+

Pt+1
Xt+1

)
Xt+1
Xt

Pt
Xt

)
,
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and
ln
(
Xt+1 + Pt+1

Pt

)
= ln

(
1 + ept+1−xt+1

)
+ ∆xt+1 − (pt − xt) ,

where we define rf = lnRf . Following Campbell and Shiller (1988), we approximate the first term around
a point PX = ep−x, to find that

ln
(
1 + elnPt+1−lnXt+1

)
≈ ln (1 + PX) + PX

PX + 1 (pt+1 − xt+1 − p− x)

= k0 + k1 (pt+1 − xt+1) ,

where k1 = PX
PX+1 and k0 = ln (1 + PX)− k1 (p− x).

Therefore, starting from Equation (43), we have that the risky asset demand of an investor i can be
approximated as

θit ≈
1
γi
k0 + k1Eit [pt+1 − xt+1] + Eit [∆xt+1]− (pt − xt)− rf

Var
[
k1 (pt+1 − xt+1) + ∆xt+1|Iit

] , (44)

where we define rf ≡ lnRf and we used that ey ≈ 1 + y.
In order to characterize the equilibrium it is necessary to characterize investors’ expectations. We

conjecture and subsequently verify that k1Eit [pt+1 − xt+1]+Eit [∆xt+1] is linear in sit, nit, and xt and that
Var [k1 (pt+1 − xt+1) + ∆xt+1] is a constant, which we denote by V . Under this conjecture, θit is a linear
function of sit, xt, and nit, and it is given by

θit ≈ αixxt + αiss
i
t + αinn

i
t − αippt + ψi.

Using this expression and the market clearing condition
∫
θitw

i
0di = Q implies

pt = αx
αp
xt + αs

αp
ut + αn

αp
nt + ψ

αp
.

This expression can also be written as

pt =
(
αx
αp
− αs
αp
ρ

)
xt + αs

αp
xt+1 + αn

αp
nt +

(
ψ

αp
− αs
αp
µx

)
.

Investors in the model learn from the price. The information contained in the price for an investor in the
model is

π̂t = αp
αs

(
pt −

(
αx
αp
xt + αn

αp
µn −

ψ

αp

))
which has a precision

τπ̂ ≡ Var [ π̂t|ut, xt]−1 =
(
αs
αn

)2
τn.

Then,

Eit [ut] = E
[
ut|sit, nit, pt

]
= τss

i
t + τun

i
t + τπ̂π̂t

τs + τu + τπ̂
=
τss

i
t + τun

i
t + τπ̂

αp
αs

(
pt − αx

αp
xt − αn

αs
µn − ψ

αp

)
τs + τu + τπ̂

and
Var

[
ut|Iit

]
= (τs + τu + τπ̂)−1

.
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Note that these two expressions imply that our conjectures above are satisfied. To see this note that

k1Eit [pt+1 − xt+1] + Eit [∆xt+1] = k1Eit

[
αx
αp
xt+1 + αs

αp
ut+1 + αn

αp
nt+1 + ψ

αp
− xt+1

]
+ Eit [µx + (ρ− 1)xt + ut]

= k1

(
Eit

[(
αx
αp
− 1
)
xt+1 + αs

αp
ut+1

]
+ αn
αp
µn + ψ

αp

)
+ (ρ− 1)xt + µx + Eit [ut]

= k1

((
αx
αp
− 1
)(

µx + Eit [ut]
)

+
(
αx
αp
− 1
)
ρxt + αn

αp
µn + ψ

αp

)
+ (ρ− 1)xt + µx + Eit [ut]

= k1

((
αx
αp
− 1 + 1

k1

)(
µx + Eit [ut]

)
+
((

αx
αp
− 1
)
ρ+ (ρ− 1)

k1

)
xt + αn

αp
µn + ψ

αp

)
where we used that Eit [ut+1] = 0 and that Eit

[
εnt+1

]
= 0. Moreover,

Var
[
k1 (pt+1 − xt+1) + ∆xt+1|Iit

]
= Var

[
k1

((
αx
αp
− 1
)
xt+1 + αs

αp
ut+1 + αn

αp
nt+1

)
+ ut|Iit

]
= k2

1

(
αx
αp
− 1 + 1

k1

)2
Var

[
ut|Iit

]
+ k2

1

(
αs
αp

)2
Var

[
ut+1|Iit

]
+ k2

1

(
αn
αp

)2
Var

[
εnt |Iit

]
= k2

1

(
αx
αp
− 1 + 1

k1

)2
(τs + τu + τπ̂)−1 + k2

1

(
αs
αp

)2
τ−1
u + k2

1

(
αn
αp

)2
τ−1
n .

Using these expressions in the first-order condition and matching coefficients gives

αix = 1
κi
k1

(
−
(
αx
αp
− 1 + 1

k1

)
τπ

αx
αs

τs + τu + τπ̂
+
(
αx
αp
− 1 + 1

k1

)
ρ

)

αis = 1
κi
k1

(
αx
αp
− 1 + 1

k1

)
τs

τs + τu + τπ̂

αin = 1
κi
k1

(
αx
αp
− 1 + 1

k1

)
τu

τs + τu + τπ̂

αip = 1
κi

(
k1

(
αx
αp
− 1 + 1

k1

)
τπ

αp
αs

τs + τu + τπ̂
− 1
)

ψi = 1
κi

(
k0 + k1

(
−
(
αx
αp
− 1 + 1

k1

)(
τπ

αp
αs

τs + τu + τπ̂
− µx

)
+ 1
)

+
(
αn
αp
µn + ψ

αp

)
− rf

)

where κi ≡ γiVar
[
k1 (pt+1 − xt+1) + ∆xt+1|Iit

]
.

In this equilibrium, our guess in Equation (44) is verified and the equilibrium price is linear and can
be expressed as in Equation (38).

G.2 An Exact CARA-Normal Formulation
In an earlier version of this paper, we developed our identification results using an exact linear formulation,
motivated by the use of a CARA-Normal framework, which is the workhorse model in the learning
literature, see e.g., Vives (2008) and Veldkamp (2011). In this section, we reproduce our identification
results using these exact linear formulations in the case of difference-stationary and stationary linear
payoffs, and we provide microfoundations in the context of CARA-Normal models.
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G.2.1 Difference-stationary linear payoff

General framework and identification We consider a discrete time environment with dates
t = 0, 1, 2, . . . ,∞, in which investors trade a risky asset in fixed supply at a price Pt at each date t. We
assume that the payoff of the risky asset at date t+1, Xt+1, follows a difference-stationary AR(1) process

∆Xt+1 = µ∆X + ρ∆Xt + ut, (45)

where µ∆X is a scalar, |ρ| < 1, and where the innovations to the payoff, ut, have mean zero, a finite
variance denoted by Var [ut] = σ2

u = τ−1
u , and are identically and independently distributed over time.

We assume that the equilibrium price difference is given by

∆Pt = φ+ φ0∆Xt + φ1∆Xt+1 + φn∆nt, (46)

where φ, φ0, φ1, and φn are parameters and where nt represents the aggregate component of investors’
trading motives that are orthogonal to the asset payoff, given by ∆nt = µ∆n + ε∆n

t , where E
[
ε∆n
t

]
= 0

and Var
[
ε∆n
t

]
= σ2

n = τ−1
∆n. For simplicity, we assume that ut and ∆nt are independent.

In this case, the unbiased signal of the innovation to the change in the future payoff ut contained in
the price, which we denote by Πt, is given respectively by

Πt ≡
∆Pt −

(
φ+ φ1µ∆X + φnµ∆n + (φ0 + ρφ1) ∆Xt

)
φ1

= ut + φn
φ1

(∆nt − µ∆n)

and absolute and relative price informativeness are given by

τΠ ≡ (Var [Πt|∆Xt+1,∆Xt])−1 =
(
φ1

φn

)2
τ∆n and τRΠ ≡

τΠ
τΠ + τu

.

Proposition 6. (Identifying price informativeness: difference-stationary linear case)
a) Absolute price informativeness. Let β, β0, and β1 denote the coefficients of the following regression

of prices on realized and future payoffs:

∆Pt = β + β0∆Xt + β1∆Xt+1 + et, (R1-Linear-Diff)

where ∆Pt denotes the date t price change, ∆Xt and ∆Xt+1 respectively denote the dates t and t+1 payoff
change, and where σ2

e = Var [et] denotes the variance of the error. Then, absolute price informativeness,
τΠ, can be recovered by

τΠ = β2
1
σ2
e

.

The OLS estimation of Regression R1-Linear-Diff yields consistent estimates of β1 and σ2
e .

b) Relative Price Informativeness. Let R2
∆X,∆X′ denote the R-squared of Regression R1-Linear-Diff.

Let R2
∆X , ζ, and ζ0 respectively denote the R-squared and the coefficients of the following regression of

price differences on payoff differences,

∆Pt = ζ + ζ0∆Xt + eζt . (R2-Linear-Diff)
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Then, relative price informativeness, τRΠ , can be recovered by

τRΠ =
R2

∆X,∆X′ −R2
∆X

1−R2
∆X

.

The OLS estimation of Regressions R1-Linear-Diff and R2-Linear-Diff yields consistent estimates of
R2

∆X,∆X′ and R2
∆X .

Proof. a) By comparing Regression R1-Linear-Diff with the structural Equation (46), it follows that
β = φ + φnµ∆n, β0 = φ0, β1 = φ1, and et = φnε

∆n
t . Consequently, σ2

e = Var [et] = (φn)2 Var
[
ε∆n
t

]
=

(φn)2
τ−1
∆n. Therefore, we can recover absolute price informativeness as follows:

τΠ = (β1)2

σ2
e

=
(
φ1

φn

)2
τ∆n.

Given Equations (45) and (46), as well as the assumptions on ut and nt, it is straightforward to show that
the OLS estimates of Regressions R1-Linear-Diff and R2-Linear-Diff are consistent, which implies that

price informativeness can be consistently estimated as τ̂Π =
(
β̂1
)2

σ̂2
e

. Formally, plim (τ̂Π) = plim
((

β̂1
)2

σ̂2
e

)
=(

φ1
φn

)2
τ∆n = τΠ.

b) Note that the R-squareds of Regressions R1-Linear-Diff and R2-Linear-Diff can be expressed as
follows:

R2
∆X,∆X′ = 1− Var (et)

Var (∆Pt)
and R2

∆X = Var (ζ0∆Xt)
Var (∆Pt)

.

After substituting Equation (45) in Regression R1-Linear-Diff, the following relation holds:

∆Pt = φ+ φ1µ∆X + φnµ∆n + (φ0 + ρφ1) ∆Xt + φ1ut + φnε
∆n
t . (47)

By comparing Regression R2-Linear-Diff with the structural Equation (47), it follows that ζ = φ +
φ1µ∆X + φnµ∆n, ζ0 = φ0 + ρφ1, and εζt = φ1ut + φnε

∆n
t .

From Equation (47), the following variance decomposition must hold:

Var (∆Pt) = Var (ζ0∆Xt) + Var
(
φ1ut + φnε

∆n
t

)
= Var (ζ0∆Xt) + (φ1)2 Var (ut) + Var (et) ,

which can be rearranged to express τΠ
τu

as follows:

1 = Var (ζ0xt)
Var (∆Pt)︸ ︷︷ ︸

R2
∆X

+ Var (et)
Var (∆Pt)︸ ︷︷ ︸
1−R2

∆X,∆X′

 (φ1)2

Var (et)
Var (ut)︸ ︷︷ ︸

τΠ
τu

+1

⇒ τΠ
τu

=
R2

∆X,∆X′ −R2
∆X

1−R2
∆X,∆X′

.

Therefore, relative price informativeness can be written as

τRΠ = τΠ
τΠ + τu

= 1
1 + 1

τΠ
τu

=
R2

∆X,∆X′ −R2
∆X

1−R2
∆X

.
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Microfoundation Time is discrete, with periods denoted by t = 0, 1, 2, . . . ,∞. Each period t, there
is a continuum of investors, indexed by i ∈ I. Each generation lives two periods and has exponential
utility over its last period wealth. An investor born at time t has preferences given by

Ui (wt+1) = −e−γiwt+1 ,

where γ is the coefficient of absolute risk aversion and wt+1 is the investor’s wealth in his final period.
There are two long-term assets in the economy: A risk-free asset in perfectly elastic supply, with return
R > 1, and a risky asset in fixed supply Q that trades at a price Pt in period t.18 The process for the
payoff of the risky asset each period t is given by

∆Xt+1 = µ∆X + ut,

where ∆Xt = Xt −Xt−1,µ∆X is a scalar and X0 = 0. The payoff Xt is realized and becomes common
knowledge at the end of period t − 1. The innovation in the payoff process, ut, and, hence, Xt+1 are
realized and observed at the end of period t. The innovations to the payoff are independently distributed
over time.

To preserve tractability, we assume that investors’ private trading needs arise from random
heterogeneous priors — see Dávila and Parlatore (2021) for a thorough analysis of this formulation.
Formally, each investor i in generation t has a prior over the innovation at time t given by

ut ∼i N
(
nit, τ

−1
u

)
,

where
nit = nt + εint with εint

iid∼ N
(
0, τ−1

n

)
and ∆nt = µ∆n+ε∆n

t with ε∆n
t ∼ N

(
0, τ−1

∆n
)
. The term nt can be interpreted as the aggregate sentiment

in the economy, where nt ⊥ εint for all t and all i. The aggregate sentiment nt is not observed and acts as
a source of aggregate noise in the economy, preventing the price from being fully revealing. For simplicity
we assume nt ⊥ ut+s for all t and all s. Moreover, we assume investors think of their prior as the correct
one and do not learn about the aggregate sentiment from it.19

Each investor i in generation t receives a signal about the innovation in the asset payoff ut given by

sit = ut + εist with εist ∼ N
(
0, τ−1

s

)
and εist ⊥ ε

j
st for all i 6= j, and ut ⊥ εist for all t and all i.

The asset demand submitted by investor i born in period t is given by the solution to the following
problem

max
Qit

(
E
[
Xt+1 +R−1pt+1|Iit

]
− Pt

)
Qit −

γi

2 Var
[
Xt+1 +R−1Pt+1|Itt

] (
Qit
)2
,

where Iit =
{
Xt, s

i
t, n

i
t, Pt

}
is the information set of an investor i in period t.

The optimality condition for an investor i in period t satisfies

Qit =
E
[
Xt+1 +R−1Pt+1|Iit

]
− Pt

γiVar
[
Xt+1 +R−1Pt+1|Iit

] .
18To simplify notation, we denote the risk-free rate by R, instead of Rf as we did in the body of the paper.
19Dávila and Parlatore (2021) show that the equilibrium structure is preserved if this assumption is relaxed.
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In a stationary equilibrium in linear strategies, we assume and subsequently verify that the equilibrium
demand of investor i can be expressed as

Qit = αiXXt + αiss
i
t + αinn

i
t − αiPPt + ψi, (48)

where αiθ, αis, αin, αip, and ψi are individual equilibrium demand coefficients. Market clearing and the
Strong Law of Large Numbers (SLLN) allows us to express the equilibrium price in period t as

Pt = αX
αP

Xt + αs
αP

ut + αn
αP

nt + ψ

αP
,

where we define cross-sectional averages αX =
∫
αiXdi, αs =

∫
αisdi, αP =

∫
αiP di, and ψ =

∫
ψidi−Q.

The unbiased signal of the innovation in the payoff contained in the price is

Πt = αP
αs

(
Pt −

αn
αs
µ∆n −

αX
αP

Xt −
ψ

αP

)
= ut + αn

αs
(nt − µ∆n) ,

where
Πt|Xt+1, Xt ∼ N

(
ut, τ

−1
Π
)
,

with price informativeness given by

τΠ = (Var [Πt|Xt+1, Xt])−1 =
(
αs
αn

)2
τ∆n.

Given our guesses for the demand functions and the linear structure of prices we have

Xt+1 +R−1Pt+1 = Xt+1 +R−1αX
αP

Xt+1 +R−1 αs
αP

ut+1 +R−1 αn
αP

nt+1 +R−1 ψ

αP
,

E
[
Xt+1 +R−1Pt+1|Iit

]
=
(

1 +R−1αX
αP

)
E
[
Xt+1|Iit

]
+R−1 αs

αP
E [ut+1] +R−1 αn

αP
E [nt+1] +R−1 ψ

αP

=
(

1 +R−1αX
αP

)(
Xt + E

[
ut|Iit

])
+R−1αs

αp
E [ut+1] +R−1 αn

αP
µ∆n +R−1 ψ

αP
,

and

Var
[
Xt+1 +R−1Pt+1|Iit

]
=
(

1 +R−1αX
αP

)2
Var

[
Xt+1|Iit

]
+
(
R−1 αs

αP

)2
Var [ut+1] +

(
R−1 αn

αP

)2
Var [nt+1]

=
(

1 +R−1αX
αP

)2
Var

[
ut|Iit

]
+
(
R−1 αs

αP

)2
Var [ut+1] +

(
R−1 αn

αP

)2
Var [nt+1] .

Moreover, given the Gaussian structure of the signals in the information set, Bayesian updating implies

E
[
ut|sit, nit, Pt

]
= τss

i
t + τun

i
t + τΠΠt

τs + τu + τΠ
=
τss

i
t + τ∆nn

i
t + +τΠ αP

αs

(
Pt − αn

αs
µ∆n − αX

αP
Xt − ψ

αP

)
τs + τu + τΠ

,

and
Var

[
ut|Iit

]
= Var

[
tt|sit, nit, Pt

]
= (τs + τu + τΠ)−1

.

IA-33



Then, the first-order condition is given by

Qit = 1
γi

(
1 +R−1 αX

αP

) (
Xt + Var

[
ut|Iit

] (
τss

i
t + τun

i
t + τΠΠ

))
+R−1 αs

αP
E [ut+1] +R−1 αn

αP
µ∆n +R−1 ψ

αP
− Pt(

1 +R−1 αX
αP

)2
Var [ut|Iit] +

(
R−1 αs

αP

)2 Var [ut+1] +
(
R−1 αn

αP

)2
τ−1
∆n

.

Matching coefficients we have

αis =

(
1 +R−1 αX

αP

)
κi

Var
[
ut|Iit

]
τs (49)

αin =

(
1 +R−1 αX

αP

)
κi

Var
[
ut|Iit

]
τη

αiX =

(
1 +R−1 αX

αP

)
κi

(
1− Var

[
ut|Iit

]
τΠ
αX
αs

)
αiP = 1

κi

(
1−

(
1 +R−1αX

αP

)
Var

[
ut|Iit

]
τΠ
αp
αs

)
ψi = − 1

κi

((
1 +R−1αX

αP

)
Var

[
ut|Iit

]
τΠ

(
αn
αs
µ∆n + ψ

αs

)
−R−1

(
αn
αP

µ∆n + ψ

αP

))
,

where

κi ≡ γi
((

1 +R−1αX
αP

)2
Var

[
ut|Iit

]
+
(
R−1 αs

αP

)2
Var [ut+1] +

(
R−1 αn

αP

)2
τ−1
∆n

)
,

since Var
[
ut|Iit

]
= (τs + τu + τΠ)−1 for all i.

Then, an equilibrium in linear strategies exists if the system above has a solution. In this equilibrium,
our guess in Equation (48) is verified and the equilibrium price is linear and can be expressed as in
Equation (51).

Note that the if the investors are ex-ante identical, the demand sensitivities are the same for all i.
Then, there exists a unique solution to the system in Equations (49) given by

αis = 1
κ

1
1−R−1

τs
τu + τs + τΠ

, αin = 1
κ

1
1−R−1ρ

τη
τu + τs + τΠ

αiX = 1
κ

ρ

1−R−1
τs

τs + τΠ
, αiP = 1

κ

τs
τs + τΠ

, and

ψi = −
1
κ

1
1−R−1

((
1−R−1) τΠ −R−1τs

)
τu

τu+τs+τΠ̂
µ∆n

1 + (1−R−1) τΠ −R−1τs
,

where τΠ =
(
τs
τu

)2
τ∆n, and

κ = γ

((
1

1−R−1

)2 1
τu + τs + τΠ

+
(
R−1 1

1−R−1
τs + τΠ

τu + τs + τΠ

)2
τ−1
u +

(
R−1

1−R−1
τs + τΠ

τu + τs + τΠ

τu
τs

)2

τ−1
∆n

)
.

G.2.2 Stationary linear payoff

General framework and identification Consider a discrete time environment with dates
t = 0, 1, 2, . . . ,∞, in which investors trade a risky asset in fixed supply at a price Pt at each date t.
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We assume that the payoff of the risky asset at date t+ 1, Xt+1, follows a stationary AR(1) process

Xt+1 = µX + ρXt + ut, (50)

where µX is a scalar, |ρ| < 1, and where the innovations to the payoff, ut, have mean zero, a finite
variance denoted by Var [ut] = σ2

u = τ−1
u , and are identically and independently distributed over time.

We assume that the equilibrium price is given by

Pt = φ+ φ0Xt + φ1Xt+1 + φnnt, (51)

where φ, φ0, φ1, and φn are parameters and where nt represents the aggregate component of investors’
trading motives that are orthogonal to the asset payoff, given by nt = µn + εnt , where E [εnt ] = 0 and
Var [εnt ] = σ2

n = τ−1
n . For simplicity, we assume that ut and nt are independent.

In this case, the unbiased signal of the innovation to the change in the future payoff ut contained in
the price, which we denote by Πt, is given by

Π̂t ≡
Pt −

(
φ+ φ1µX + φnµn + (φ0 + ρφ1)Xt

)
φ1

= ut + φn
φ1

(nt − µn)

and absolute and relative price informativeness are given respectively by

τΠ̂ ≡
(
Var

[
Π̂t

∣∣∣Xt+1, Xt

])−1
=
(
φ1

φn

)2
τn and τRΠ̂ ≡

τΠ̂
τΠ̂ + τu

.

Proposition 7. (Identifying price informativeness: difference-stationary linear case)
a) Absolute price informativeness. Let β, β0, and β1 denote the coefficients of the following regression

of prices on realized and future payoffs,

Pt = β + β0Xt + β1Xt+1 + et, (R1-Linear)

where Pt denotes the date t price, Xt and Xt+1 respectively denote the dates t and t + 1 payoff, and
where σ2

e = Var [et] denotes the variance of the error. Then, absolute price informativeness, τΠ̂, can be
recovered by

τΠ̂ = β2
1
σ2
e

.

The OLS estimation of Regression R1-Linear yields consistent estimates of β1 and σ2
e .

b) Relative Price Informativeness. Let R2
X,X′ denote the R-squared of Regression R1-Linear. Let

R2
X , ζ, and ζ0 respectively denote the R-squared and the coefficients of the following regression of price

differences on payoff differences,
∆Pt = ζ + ζ0∆Xt + eζt . (R2-Linear)

Then, relative price informativeness, τRΠ̂ , can be recovered by

τRΠ̂ =
R2
X,X′ −R2

X

1−R2
X

.

The OLS estimation of Regressions R1-Linear and R2-Linear yields consistent estimates of R2
X,X′ and

R2
X .

Proof. a) By comparing Regression R1-Linear with the structural Equation (38), it follows that β =
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φ + φnµn, β0 = φ0, β1 = φ1, and et = φnε
n
t . Consequently, σ2

e = Var [et] = (φn)2 Var [εnt ] = (φn)2
τ−1
n .

Therefore, we can recover absolute price informativeness as follows

τΠ̂ = (β1)2

σ2
e

=
(
φ1

φn

)2
τn.

Given Equations (50) and (51), as well as the assumptions on ut and nt, it is straightforward to show
that the OLS estimates of Regressions R1-Linear and R2-Linear are consistent, which implies that price

informativeness can be consistently estimated as τ̂Π̂ =
(
β̂1
)2

σ̂2
e

. Formally, plim (τ̂Π) = plim
((

β̂1
)2

σ̂2
e

)
=(

φ1
φn

)2
τn = τΠ̂.

b) Note that the R-squareds of Regressions R1-Linear and R2-Linear can be expressed as follows

R2
X,X′ = 1− Var (et)

Var (Pt)
and R2

X = Var (ζ0Xt)
Var (Pt)

.

After substituting Equation (50) in Equation (51), the following relation holds

Pt = φ+ φ1µX + φnµn + (φ0 + ρφ1)Xt + φ1ut + φnε
n
t . (52)

By comparing Regression R2-Linear with the structural Equation (52), it follows that ζ = φ + φ1µX +
φnµn, ζ0 = φ0 + ρφ1, and εζt = φ1ut + φnε

n
t .

From Equation (52), the following variance decomposition must hold

Var (Pt) = Var (ζ0Xt) + Var (φ1ut + φnε
n
t )

= Var (ζ0Xt) + (φ1)2 Var (ut) + Var (et) ,

which can be rearranged to express τΠ̂
τu

as follows

1 = Var (ζ0xt)
Var (Pt)︸ ︷︷ ︸

R2
X

+ Var (et)
Var (Pt)︸ ︷︷ ︸
1−R2

X,X′


(φ1)2

Var (et)
Var (ut)︸ ︷︷ ︸

τΠ̂
τu

+1

⇒
τΠ
τu

=
R2
X,X′ −R2

X

1−R2
X,X′

.

Therefore, relative price informativeness can be written as

τRΠ̂ =
τΠ̂

τΠ̂ + τu
= 1

1 + 1
τΠ̂
τu

=
R2
X,X′ −R2

X

1−R2
X

.

Microfoundation Time is discrete, with periods denoted by t = 0, 1, 2, . . . ,∞. Each period t, there
is a continuum of investors, indexed by i ∈ I. Each generation lives two periods and has exponential
utility over its last period wealth. An investor born at time t has preferences given by

Ui (wt+1) = −e−γ
iwt+1 ,
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where γ is the coefficient of absolute risk aversion and wt+1 is the investor’s wealth in his final period.
There are two long-term assets in the economy: A risk-free asset in perfectly elastic supply, with return
R > 1, and a risky asset in fixed supply Q that trades at a price Pt in period t. The payoff of the risky
asset each period t is given by

Xt+1 = µX + ρXt + ut,

where µX is a scalar, |ρ| < 1, and X0 = 0. The payoff Xt is realized and becomes common knowledge at
the end of period t− 1. The innovation in the payoff, ut, and, hence, Xt+1 are realized and observed at
the end of period t. The innovations to the payoff are independently distributed over time.

To preserve tractability, we assume that investors’ private trading needs arise from random
heterogeneous priors — see Dávila and Parlatore (2021) for a thorough analysis of this formulation.
Formally, each investor i in generation t has a prior over the innovation at time t given by

ut ∼i N
(
nit, τ

−1
u

)
,

where
nit = nt + εint with εint

iid∼ N
(
0, τ−1

n

)
,

and nt = µn + εnt with εnt ∼ N
(
0, τ−1

n

)
. Note that nt can be interpreted as the aggregate sentiment in

the economy, where nt ⊥ εint for all t and all i. The aggregate sentiment nt is not observed and acts as a
source of aggregate noise in the economy, preventing the price from being fully revealing. For simplicity
we assume nt ⊥ ut+s for all t and all s. Moreover, we assume investors think of their prior as the correct
one and do not learn about the aggregate sentiment from it.20

Each investor i in generation t receives a signal about the innovation in the asset payoff ut given by

sit = ut + εist with εist ∼ N
(
0, τ−1

s

)
,

and εist ⊥ ε
j
st for all i 6= j, and ut ⊥ εist for all t and all i.

Definition. The asset demand submitted by investor i born in period t is given by the solution to the
following problem:

max
Qit

(
E
[
Xt+1 +R−1pt+1|Iit

]
− Pt

)
Qit −

γi

2 Var
[
Xt+1 +R−1Pt+1|Itt

] (
Qit
)2
,

where Iit =
{
sit, n

i
t, {Xs}s≤t , {Ps}s≤t

}
is the information set of an investor i in period t.

The optimality condition for an investor i in period t satisfies

Qit =
E
[
Xt+1 +R−1Pt+1|Iit

]
− Pt

γiVar
[
Xt+1 +R−1Pt+1|Iit

] .
In a stationary equilibrium in linear strategies, we assume and subsequently verify that the equilibrium
demand of investor i can be expressed as

∆Qit = αiXXt + αiss
i
t + αinn

i
t − αiPPt + ψi, (53)

where αiθ, αis, αin, αip, and ψi are individual equilibrium demand coefficients. Market clearing and the

20Dávila and Parlatore (2021) show that the equilibrium structure is preserved if this assumption is relaxed.
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Strong Law of Large Numbers allows us to express the equilibrium price in period t as

Pt = αX
αP

Xt + αs
αP

ut + αn
αP

nt + ψ

αP
,

where we define cross-sectional averages αX =
∫
αiXdi, αs =

∫
αisdi, αP =

∫
αiP di, and ψ =

∫
ψidi−Q.

The unbiased signal of the innovation in the payoff contained in the price is

Π̂t = αP
αs

(
Pt −

αn
αs
µn −

αX
αP

Xt −
ψ

αP

)
= ut + αn

αs
(nt − µn) ,

where
Π̂t|Xt+1, Xt ∼ N

(
ut, τ

−1
Π̂

)
,

with price informativeness given by

τΠ̂ =
(
Var

[
Π̂t|Xt+1, Xt

])−1
=
(
αs
αn

)2
τn.

Given our guesses for the demand functions and the linear structure of prices we have

Xt+1 +R−1Pt+1 = Xt+1 +R−1αX
αP

Xt+1 +R−1 αs
αP

ut+1 +R−1 αn
αP

nt+1 +R−1 ψ

αP
,

E
[
Xt+1 +R−1Pt+1|Iit

]
=
(

1 +R−1αX
αP

)
E
[
Xt+1|Iit

]
+R−1 αs

αP
E [ut+1] +R−1 αn

αP
E [nt+1] +R−1 ψ

αP

=
(

1 +R−1αX
αP

)(
ρXt + E

[
ut|Iit

])
+R−1αs

αp
E [ut+1] +R−1 αn

αP
µn +R−1 ψ

αP
,

and

Var
[
Xt+1 +R−1Pt+1|Iit

]
=
(

1 +R−1αX
αP

)2
Var

[
Xt+1|Iit

]
+
(
R−1 αs

αP

)2
Var [ut+1] +

(
R−1 αn

αP

)2
Var [nt+1]

=
(

1 +R−1αX
αP

)2
Var

[
ut|Iit

]
+
(
R−1 αs

αP

)2
Var [ut+1] +

(
R−1 αn

αP

)2
Var [nt+1] .

Moreover, given the Gaussian structure of the signals in the information set, Bayesian updating implies

E
[
ut|sit, nit, Pt

]
=
τss

i
t + τun

i
t + τΠ̂Π̂t

τs + τu + τΠ̂
=
τss

i
t + τnn

i
t + +τΠ̂

αP
αs

(
Pt − αn

αs
µn − αX

αP
Xt − ψ

αP

)
τs + τu + τΠ̂

,

and
Var

[
ut|Iit

]
= Var

[
ut|sit, nit, Pt

]
= (τs + τu + τΠ)−1

.

Then, the first-order condition is given by

Qit = 1
γi

(
1 +R−1 αX

αP

)(
ρXt + Var

[
ut|Iit

] (
τss

i
t + τun

i
t + τΠ̂Π̂t

))
+R−1 αs

αP
E [ut+1] +R−1 αn

αP
µn +R−1 ψ

αP
− Pt(

1 +R−1 αX
αP

)2
Var [ut|Iit] +

(
R−1 αs

αP

)2
Var [ut+1] +

(
R−1 αn

αP

)2
τ−1
n

.
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Matching coefficients we have

αis =

(
1 +R−1 αX

αP

)
κi

Var
[
ut|Iit

]
τs (54)

αin =

(
1 +R−1 αX

αP

)
κi

Var
[
ut|Iit

]
τη

αiX =

(
1 +R−1 αX

αP

)
κi

(
ρ− Var

[
ut|Iit

]
τΠ̂
αX
αs

)
αiP = 1

κi

(
1−

(
1 +R−1αX

αP

)
Var

[
ut|Iit

]
τΠ̂
αp
αs

)
ψi = − 1

κi

((
1 +R−1αX

αP

)
Var

[
ut|Iit

]
τΠ̂

(
αn
αs
µn + ψ

αs

)
−R−1

(
αn
αP

µn + ψ

αP

))
,

where

κi ≡ γi
((

1 +R−1αX
αP

)2
Var

[
ut|Iit

]
+
(
R−1 αs

αP

)2
Var [ut+1] +

(
R−1 αn

αP

)2
τ−1
n

)
,

since Var
[
ut|Iit

]
=
(
τs + τu + τΠ̂

)−1 for all i.
Then, an equilibrium in linear strategies exists if the system above has a solution. In this equilibrium,

our guess in Equation (53) is verified and the equilibrium price is linear and can be expressed as in
Equation (51).

Note that when investors are ex-ante identical, the demand sensitivities are the same for all i. Then,
there exists a unique solution to the system in Equations (54), that is given by

αis = 1
κ

1
1−R−1ρ

τs
τu + τs + τΠ̂

, αin = 1
κ

1
1−R−1ρ

τη
τu + τs + τΠ̂

αiX = 1
κ

ρ

1−R−1ρ

τs
τs + τΠ̂

, αiP = 1
κ

τs
τs + τΠ̂

, and

ψi = −
1
κ

1
1−R−1ρ

((
1−R−1) τΠ̂ −R−1τs

)
τu

τu+τs+τΠ̂
µn

1 + (1−R−1) τΠ̂ −R−1τs
,

where τΠ̂ =
(
τs
τu

)2
τn and

κ = γ

((
1

1−R−1ρ

)2 1
τu + τs + τΠ̂

+
(
R−1 1

1−R−1ρ

τs + τΠ̂
τu + τs + τΠ̂

)2
τ−1
u +

(
R−1

1−R−1ρ

τs + τΠ̂
τu + τs + τΠ̂

τu
τs

)2

τ−1
n

)
.
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