Preventing Runs with Redemptions Fees by Xuesong Huang and Todd Keister

Discussion by Cecilia Parlatore

NYU Stern, NBER and CEPR

October 6, 2023

Overview

Big picture question: How can we prevent runs on financial intermediaries?

Overview

Big picture question: How can we prevent runs on financial intermediaries?

This paper: Can redemption fees prevent runs on MMFs?

Three fee structures:

2014 Redemption fees after a threshold liquidity level is crossed2023 Redemption fees based on the current liquidity demand

★ Optimal redemption fee schedule

Overview

Big picture question: How can we prevent runs on financial intermediaries?

This paper: Can redemption fees prevent runs on MMFs?

Three fee structures:

2014 Redemption fees after a threshold liquidity level is crossed2023 Redemption fees based on the current liquidity demand

★ Optimal redemption fee schedule

Runs on MMFs

- ▶ Traditionally, MMFs offer redeemable shares at a fixed NAV of \$1
- ▶ Fixed NAV, makes MMFs prone to "classic runs"
 - Market NAV depends on redemptions at the end of the day
 - Asset liquidations reduce the value of the shares
 - ▶ If NAV drops below \$0.995fund breaks the buck and is liquidated

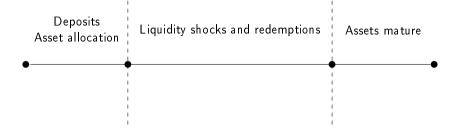
Promised amount independent of asset values and liquidation costs

Runs on MMFs

- Traditionally, MMFs offer redeemable shares at a fixed NAV of \$1
- ▶ Fixed NAV, makes MMFs prone to "classic runs"
 - Market NAV depends on redemptions at the end of the day
 - Asset liquidations reduce the value of the shares
 - ▶ If NAV drops below \$0.995fund breaks the buck and is liquidated
- Promised amount independent of asset values and liquidation costs

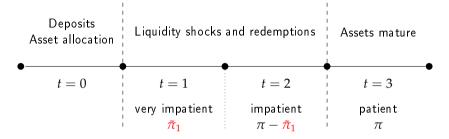
 \Rightarrow strategic complementarities

- Calls for reform after runs on MMFs
 - ▶ 2014 (after 2008): Redemption fees when liquidity is low \Rightarrow Preemptive runs

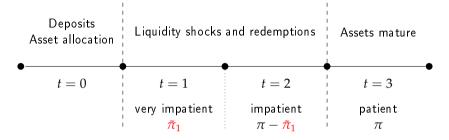

Runs on MMFs

- Traditionally, MMFs offer redeemable shares at a fixed NAV of \$1
- ▶ Fixed NAV, makes MMFs prone to "classic runs"
 - Market NAV depends on redemptions at the end of the day
 - Asset liquidations reduce the value of the shares
 - ▶ If NAV drops below \$0.995fund breaks the buck and is liquidated
- Promised amount independent of asset values and liquidation costs

 \Rightarrow strategic complementarities


- Calls for reform after runs on MMFs
 - ▶ 2014 (after 2008): Redemption fees when liquidity is low \Rightarrow Preemptive runs
 - ▶ 2023 (after 2020): Redemption fees contingent on current demand

Almost a Standard Banking Model


- Fund chooses holdings of short-term, risk-free and long-term assets: $r_1 \leq 1$, $\tilde{r_2} \leq r_1$, R > 1
- Investors subject to liquidity shocks (private info) with demandable claims

Almost a Standard Banking Model

- Fund chooses holdings of short-term, risk-free and long-term assets: $r_1 \leq 1$, $\tilde{r_2} \leq r_1, \ R > 1$
- Investors subject to liquidity shocks (private info) with demandable claims
- Liquidity shocks are sequential and investors learn their type gradually
 - Very impatient $u(c_1)$, impatient $u(c_1 + c_2)$, patient $u(c_1 + c_2 + c_3)$

Almost a Standard Banking Model

- Fund chooses holdings of short-term, risk-free and long-term assets: $r_1 \le 1$, $\tilde{r_2} \le r_1$, R > 1
- Investors subject to liquidity shocks (private info) with demandable claims
- Liquidity shocks are sequential and investors learn their type gradually
 - Very impatient $u(c_1)$, impatient $u(c_1 + c_2)$, patient $u(c_1 + c_2 + c_3)$
 - Share of very impatient $ilde{\pi}_1$ consumers is unknown
- \blacktriangleright Only a fraction δ of patient investors can run at t=1

Run Proof Contracts

Efficient allocation (full information)

► $c_1 = c_2 < c_3$ + no excess liquidity

Run Proof Contracts

- Efficient allocation (full information)
 - $c_1 = c_2 < c_3 + no$ excess liquidity
- ► Can the efficient allocation be implemented in a *time consistent* way?
 - Yes! Unique implementation features fees off equilibrium
 - \blacktriangleright However, it is not run always proof depends on max size of run δ
- Run-proof constraint at t = 1

 $\mathbb{E}_{\pi_{1}}\left[u\left(c_{1}\left(m_{1}\right)\right)\right] \leq \mathbb{E}_{\pi_{1}}\left[p_{n}u\left(c_{2}\left(m_{1},m_{2}\right)\right) + (1-p_{n})u\left(c_{3}\left(m_{1},m_{2}\right)\right)\right]$

• $c_2(m_1, m_2)$ and $c_3(m_1, m_2)$ are chosen optimally (TC) after observing m_1 and m_2

Run Proof Contracts

- Efficient allocation (full information)
 - $c_1 = c_2 < c_3 + no$ excess liquidity
- ► Can the efficient allocation be implemented in a *time consistent* way?
 - Yes! Unique implementation features fees off equilibrium
 - \blacktriangleright However, it is not run always proof depends on max size of run δ
- Run-proof constraint at t = 1

 $\mathbb{E}_{\pi_{1}}\left[u\left(c_{1}\left(m_{1}\right)\right)\right] \leq \mathbb{E}_{\pi_{1}}\left[p_{n}u\left(c_{2}\left(m_{1},m_{2}\right)\right) + (1-p_{n})u\left(c_{3}\left(m_{1},m_{2}\right)\right)\right]$

- $c_2(m_1, m_2)$ and $c_3(m_1, m_2)$ are chosen optimally (TC) after observing m_1 and m_2
- How can we attain run-proof contracts?
 - decreasing c₁ (reducing risk sharing)
 - making c_1 contingent on the state (m_t) to incorporate liquidation costs
- Optimal run-proof contract features both

1. Timely and policy relevant paper (very!)

1. Timely and policy relevant paper (very!)

2. When are fees decreasing in m_t ? Is this always the case?

- 1. Timely and policy relevant paper (very!)
- 2. When are fees decresing in m_t ? Is this always the case?
- 3. Focus on run-proof. But run proof is not free!
 - Can we improve on the best run-proof allocation?
 - Tolerable run risk in first best allocation?

- 1. Timely and policy relevant paper (very!)
- 2. When are fees decresing in m_t ? Is this always the case?
- 3. Focus on run-proof. But run proof is not free!
 - Can we improve on the best run-proof allocation?
 - Tolerable run risk in first best allocation?
- 4. Floating NAV/ mark-to-market vs. redemption fees
 - Fees make "fixed NAV" float with respect to m_t
 - Is run-proof better than floating?

- 1. Timely and policy relevant paper (very!)
- 2. When are fees decresing in m_t ? Is this always the case?
- 3. Focus on run-proof. But run proof is not free!
 - Can we improve on the best run-proof allocation?
 - Tolerable run risk in first best allocation?
- 4. Floating NAV/ mark-to-market vs. redemption fees
 - Fees make "fixed NAV" float with respect to m_t
 - Is run-proof better than floating?
- 5. A lot one can do! And the paper does a lot
 - Portfolio restrictions vs. redemption fees, uncertainty about δ , robust planner